Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Feb 1;265(3):879–885. doi: 10.1042/bj2650879

Modulation of biliary lipid secretion by forskolin and cyclic AMP analogues.

S Hamlin 1, K Rahman 1, M Carrella 1, R Coleman 1
PMCID: PMC1133713  PMID: 2154971

Abstract

Exposure of isolated perfused rat livers to either 100 microM-forskolin, a potent activator of adenylate cyclase, or to 0.5 mM-concentrations of the cAMP analogues chlorophenylthio cAMP (CPTcAMP), dibutyryl cAMP (dbcAMP) and 8-bromo cAMP (8BrcAMP), to provoke increases in intracellular concentrations of cAMP, resulted in marked changes in bile volume and composition. Bile flow reached a peak after 10 min, before declining towards control levels, and an increase in several secretory parameters was also observed at this time. At 20 min, a substantial decrease in the output of both phospholipid and cholesterol was evident, and this suppression of secretion was maintained throughout the remainder of the experiment. The order of effectiveness of the cAMP-elevating agents at decreasing biliary lipid output was CPTcAMP greater than forskolin greater than dbcAMP greater than 8BrcAMP. Biliary output of bile acids was essentially unaltered compared with controls; similarly, no decrease in the secretion of protein and triacylglycerols into the perfusion medium was observed. This suggests that the elevation of intracellular levels of cAMP may cause a selective inhibition of biliary lipid output rather than a more general inhibition of hepatic secretion.

Full text

PDF
879

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATKINS E. L., PEARCE J. W. Mechanisms of the renal response to plasma volume expansion. Can J Biochem Physiol. 1959 Jan;37(1):91–102. [PubMed] [Google Scholar]
  2. Azhar S., Hwang S. F., Reaven E. Effects of antimicrotubule agents on phospholipid metabolism in rat hepatic subcellular membranes. Biochem Pharmacol. 1985 Sep 1;34(17):3153–3159. doi: 10.1016/0006-2952(85)90162-5. [DOI] [PubMed] [Google Scholar]
  3. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  4. Baker A. L., Kaplan M. M. Effects of cholera enterotoxin, glucagon, and dibutyryl cyclic AMP on rat liver alkaline phosphatase, bile flow, and bile composition. Gastroenterology. 1976 Apr;70(4):577–581. [PubMed] [Google Scholar]
  5. Barnhart J. L., Combes B. Characteristics common to choleretic increments of bile induced by theophylline, glucagon and SQ-20009 in the dog. Proc Soc Exp Biol Med. 1975 Dec;150(3):591–596. doi: 10.3181/00379727-150-39086. [DOI] [PubMed] [Google Scholar]
  6. Bergmeyer H. U., Scheibe P., Wahlefeld A. W. Optimization of methods for aspartate aminotransferase and alanine aminotransferase. Clin Chem. 1978 Jan;24(1):58–73. [PubMed] [Google Scholar]
  7. Bickerstaff K. I., Garberoglio C. A., Baker A. L., Moossa A. R. Hormonal control of biliary lipid secretion in dogs. Ann Surg. 1983 Aug;198(2):168–171. doi: 10.1097/00000658-198308000-00010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Birnbaumer L., Stengel D., Desmier M., Hanoune J. Forskolin regulation of liver membrane adenylyl cyclase. Eur J Biochem. 1983 Oct 17;136(1):107–112. doi: 10.1111/j.1432-1033.1983.tb07712.x. [DOI] [PubMed] [Google Scholar]
  9. Burgoyne R. D., Cheek T. R. Reorganisation of peripheral actin filaments as a prelude to exocytosis. Biosci Rep. 1987 Apr;7(4):281–288. doi: 10.1007/BF01121449. [DOI] [PubMed] [Google Scholar]
  10. Butterwith S. C., Martin A., Brindley D. N. Can phosphorylation of phosphatidate phosphohydrolase by a cyclic AMP-dependent mechanism regulate its activity and subcellular distribution and control hepatic glycerolipid synthesis? Biochem J. 1984 Sep 1;222(2):487–493. doi: 10.1042/bj2220487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cheek T. R., Burgoyne R. D. Nicotine-evoked disassembly of cortical actin filaments in adrenal chromaffin cells. FEBS Lett. 1986 Oct 20;207(1):110–114. doi: 10.1016/0014-5793(86)80022-9. [DOI] [PubMed] [Google Scholar]
  12. Coleman R. Biochemistry of bile secretion. Biochem J. 1987 Jun 1;244(2):249–261. doi: 10.1042/bj2440249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Coleman R., Iqbal S., Godfrey P. P., Billington D. Membranes and bile formation. Composition of several mammalian biles and their membrane-damaging properties. Biochem J. 1979 Jan 15;178(1):201–208. doi: 10.1042/bj1780201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cronholm T., Curstedt T., Sjövall J. Origin of biliary phosphatidylcholines studied by coenzyme labelling with [1,1-2H2]ethanol. Biochim Biophys Acta. 1983 Sep 20;753(2):276–279. doi: 10.1016/0005-2760(83)90019-x. [DOI] [PubMed] [Google Scholar]
  15. Daly J. W., Padgett W., Seamon K. B. Activation of cyclic AMP-generating systems in brain membranes and slices by the diterpene forskolin: augmentation of receptor-mediated responses. J Neurochem. 1982 Feb;38(2):532–544. doi: 10.1111/j.1471-4159.1982.tb08660.x. [DOI] [PubMed] [Google Scholar]
  16. Gurantz D., Hofmann A. F. Influence of bile acid structure on bile flow and biliary lipid secretion in the hamster. Am J Physiol. 1984 Dec;247(6 Pt 1):G736–G748. doi: 10.1152/ajpgi.1984.247.6.G736. [DOI] [PubMed] [Google Scholar]
  17. Hardison W. G., Apter J. T. Micellar theory of biliary cholesterol excretion. Am J Physiol. 1972 Jan;222(1):61–67. doi: 10.1152/ajplegacy.1972.222.1.61. [DOI] [PubMed] [Google Scholar]
  18. Hersey S. J., Miller M., Norris S. H. Forskolin: a new biochemical tool for studying gastric secretion. Prog Clin Biol Res. 1983;126:329–341. [PubMed] [Google Scholar]
  19. Klaassen C. D., Watkins J. B., 3rd Mechanisms of bile formation, hepatic uptake, and biliary excretion. Pharmacol Rev. 1984 Mar;36(1):1–67. [PubMed] [Google Scholar]
  20. Kloppel T. M., Brown W. R., Reichen J. Mechanisms of secretion of proteins into bile: studies in the perfused rat liver. Hepatology. 1986 Jul-Aug;6(4):587–594. doi: 10.1002/hep.1840060407. [DOI] [PubMed] [Google Scholar]
  21. Knodell R. G., Steele N. M., Stanley L. N. Hepatic bile formation in the rat. Addition of vasoactive intestinal peptide to the equation. Dig Dis Sci. 1987 Nov;32(11):1290–1296. doi: 10.1007/BF01296380. [DOI] [PubMed] [Google Scholar]
  22. Kortz W. J., Meyers W. C., Schirmer B. D., Jones R. S. Effects of dibutyryl cyclic AMP and theophylline on biliary cholesterol secretion. J Surg Res. 1984 Jan;36(1):62–70. doi: 10.1016/0022-4804(84)90068-4. [DOI] [PubMed] [Google Scholar]
  23. Le Marchand Y., Singh A., Assimacopoulos-Jeannet F., Orci L., Rouiller C., Jeanrenaud B. A role for the microtubular system in the release of very low density lipoproteins by perfused mouse livers. J Biol Chem. 1973 Oct 10;248(19):6862–6870. [PubMed] [Google Scholar]
  24. Lowe P. J., Barnwell S. G., Coleman R. Rapid kinetic analysis of the bile-salt-dependent secretion of phospholipid, cholesterol and a plasma-membrane enzyme into bile. Biochem J. 1984 Sep 15;222(3):631–637. doi: 10.1042/bj2220631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mancini G., Carbonara A. O., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry. 1965 Sep;2(3):235–254. doi: 10.1016/0019-2791(65)90004-2. [DOI] [PubMed] [Google Scholar]
  26. Metzger H., Lindner E. The positive inotropic-acting forskolin, a potent adenylate cyclase activator. Arzneimittelforschung. 1981;31(8):1248–1250. [PubMed] [Google Scholar]
  27. Meyers W. C., Jones R. S. Effect of glucagon and insulin upon biliary lipid secretion. Am J Surg. 1979 Jan;137(1):7–12. doi: 10.1016/0002-9610(79)90003-5. [DOI] [PubMed] [Google Scholar]
  28. Meyers W. C., Jones R. S. Glucagon or insulin suppressed biliary lipid excretion in dog and man. Ann Surg. 1979 Dec;190(6):709–718. doi: 10.1097/00000658-197912000-00007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miller J. P., Beck A. H., Simon L. N., Meyer R. B., Jr Induction of hepatic tyrosine aminotransferase in vivo by derivatives of cyclic adenosine 3':5'-monophosphate. J Biol Chem. 1975 Jan 25;250(2):426–431. [PubMed] [Google Scholar]
  30. Orci L., Le Marchand Y., Singh A., Assimacopoulos-Jeannet F., Rouiller C., Jeanrenaud B. Letter: Role of microtubules in lipoprotein secretion by the liver. Nature. 1973 Jul 6;244(5410):30–32. doi: 10.1038/244030a0. [DOI] [PubMed] [Google Scholar]
  31. Orloff J., Handler J. The role of adenosine 3',5'-phosphate in the action of antidiuretic hormone. Am J Med. 1967 May;42(5):757–768. doi: 10.1016/0002-9343(67)90093-9. [DOI] [PubMed] [Google Scholar]
  32. Pelech S. L., Pritchard P. H., Sommerman E. F., Percival-Smith A., Vance D. E. Glucagon inhibits phosphatidylcholine biosynthesis via the CDP-choline and transmethylation pathways in cultured rat hepatocytes. Can J Biochem Cell Biol. 1984 Apr;62(4):196–202. doi: 10.1139/o84-028. [DOI] [PubMed] [Google Scholar]
  33. Pelech S. L., Pritchard P. H., Vance D. E. Prolonged effects of cyclic AMP analogues of phosphatidylcholine biosynthesis in cultured rat hepatocytes. Biochim Biophys Acta. 1982 Nov 12;713(2):260–269. doi: 10.1016/0005-2760(82)90243-0. [DOI] [PubMed] [Google Scholar]
  34. Pelech S. L., Pritchard P. H., Vance D. E. cAMP analogues inhibit phosphatidylcholine biosynthesis in cultured rat hepatocytes. J Biol Chem. 1981 Aug 25;256(16):8283–8286. [PubMed] [Google Scholar]
  35. Poupon R. E., Dol M. L., Dumont M., Erlinger S. Evidence against a physiological role of cAMP in choleresis in dogs and rats. Biochem Pharmacol. 1978;27(20):2413–2416. doi: 10.1016/0006-2952(78)90353-2. [DOI] [PubMed] [Google Scholar]
  36. Rahman K., Coleman R. Biliary lipid secretion and its control. Effect of taurodehydrocholate. Biochem J. 1987 Jul 15;245(2):531–536. doi: 10.1042/bj2450531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rahman K., Coleman R. Selective biliary lipid secretion at low bile-salt-output rates in the isolated perfused rat liver. Effects of phalloidin. Biochem J. 1986 Jul 1;237(1):301–304. doi: 10.1042/bj2370301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rahman K., Hammond T. G., Lowe P. J., Barnwell S. G., Clark B., Coleman R. Control of biliary phospholipid secretion. Effect of continuous and discontinuous infusion of taurocholate on biliary phospholipid secretion. Biochem J. 1986 Mar 1;234(2):421–427. doi: 10.1042/bj2340421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rambaud J. C., Sraer J. D., Vidon N., Bernier J. J. Influence comparée du lactose, du glucose et du chlorure de sodium sur les mouvements nets d'eau trans-intestinaux. Etude chez l'homme normal par la technique de perfusion de l'intestin. Rev Fr Etud Clin Biol. 1968 Apr;13(4):341–350. [PubMed] [Google Scholar]
  40. Schirmer B. D., Kortz W. J., Miller R. J., Christian K. G., Hayes E., Jones R. S. Glucagon lowers canine biliary cholesterol output at physiologic doses. Dig Dis Sci. 1986 Mar;31(3):297–304. doi: 10.1007/BF01318122. [DOI] [PubMed] [Google Scholar]
  41. Schneyer C. R., Piñeyro M. A., Gregerman R. I. Mechanism of action of forskolin on adenylate cyclase: effect on bovine sperm complemented with erythrocyte membranes. Life Sci. 1983 Jul 18;33(3):275–279. doi: 10.1016/0024-3205(83)90387-9. [DOI] [PubMed] [Google Scholar]
  42. Schwartz C. C., Berman M., Vlahcevic Z. R., Halloran L. G., Gregory D. H., Swell L. Multicompartmental analysis of cholesterol metabolism in man. Characterization of the hepatic bile acid and biliary cholesterol precursor sites. J Clin Invest. 1978 Feb;61(2):408–423. doi: 10.1172/JCI108952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Seamon K. B., Padgett W., Daly J. W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3363–3367. doi: 10.1073/pnas.78.6.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Seamon K., Daly J. W. Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J Biol Chem. 1981 Oct 10;256(19):9799–9801. [PubMed] [Google Scholar]
  45. Sewell R. B., Hoffman N. E., Smallwood R. A., Cockbain S. Bile acid structure and bile formation: a comparison of hydroxy and keto bile acids. Am J Physiol. 1980 Jan;238(1):G10–G17. doi: 10.1152/ajpgi.1980.238.1.G10. [DOI] [PubMed] [Google Scholar]
  46. Thomsen O. O., Larsen J. A. The effect of glucagon, dibutyrylic cyclic AMP and insulin on bile production in the intact rat and the perfused rat liver. Acta Physiol Scand. 1981 Jan;111(1):23–30. doi: 10.1111/j.1748-1716.1981.tb06700.x. [DOI] [PubMed] [Google Scholar]
  47. Tijburg L. B., Houweling M., Geelen M. J., Van Golde L. M. Inhibition of phosphatidylethanolamine synthesis by glucagon in isolated rat hepatocytes. Biochem J. 1989 Feb 1;257(3):645–650. doi: 10.1042/bj2570645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wheeler H. O. Secretion of bile acids by the liver and their role in the formation of hepatic bile. Arch Intern Med. 1972 Oct;130(4):533–541. [PubMed] [Google Scholar]
  49. Whetton A. D., Needham L., Dodd N. J., Heyworth C. M., Houslay M. D. Forskolin and ethanol both perturb the structure of liver plasma membranes and activate adenylate cyclase activity. Biochem Pharmacol. 1983 May 15;32(10):1601–1608. doi: 10.1016/0006-2952(83)90334-9. [DOI] [PubMed] [Google Scholar]
  50. Wong S. K., Martin B. R. The role of a guanine nucleotide-binding protein in the activation of rat liver plasma-membrane adenylate cyclase by forskolin. Biochem J. 1983 Dec 15;216(3):753–759. doi: 10.1042/bj2160753. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES