Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Jun 15;292(Pt 3):673–676. doi: 10.1042/bj2920673

Copper(I) transfer into metallothionein mediated by glutathione.

A M Ferreira 1, M R Ciriolo 1, L Marcocci 1, G Rotilio 1
PMCID: PMC1134166  PMID: 8317998

Abstract

Rabbit liver metallothionein depleted of Cd(II) and Zn(II) was fully reconstituted using a Cu(I)-GSH complex under strictly anaerobic conditions. Anaerobic fluorescence titration, using an emission band at 625 nm which is diagnostic of the correct insertion of Cu(I) into the thiolate clusters of metallothionein, showed that the fluorescence maximum was obtained on addition of as many Cu(I) equivalents as the available Cu(I)-binding sites in the protein (i.e. 12). Binding was nearly complete within 1 min, and Cu(I)-GSH was much more efficient than Cu(I)-thiourea or Cu(I)-acetonitrile in metallothionein reconstitution. In air, full reconstitution was obtained with stoichiometric copper only when an excess of GSH was present in the reaction mixture. Cu(I)-GSH was also able to displace Zn(II) and Cd(II) from natural metallized thionein. It is concluded that: (a) Cu(I)-GSH is a potential physiological Cu(I) carrier, not only for Cu2+/Zn2+ superoxide dismutase [Ciriolo, Desideri, Paci and Rotilio (1990) J. Biol. Chem. 265, 11030-11034] but also for metallothionein; (b) in the case of metallothionein, physiological concentrations of GSH protect the protein from autoxidation in air and facilitate Cu(I)-thiolate exchange; (c) the natural metal composition of metallothionein may be related to metal bioavailability rather than to evolutionary changes in protein structure.

Full text

PDF
673

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. E. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985;113:548–555. doi: 10.1016/s0076-6879(85)13073-9. [DOI] [PubMed] [Google Scholar]
  2. Byrd J., Berger R. M., McMillin D. R., Wright C. F., Hamer D., Winge D. R. Characterization of the copper-thiolate cluster in yeast metallothionein and two truncated mutants. J Biol Chem. 1988 May 15;263(14):6688–6694. [PubMed] [Google Scholar]
  3. Bühler R. H., Kägi J. H. Spectroscopic properties of zinc-metallothionein. Experientia Suppl. 1979;34:211–220. doi: 10.1007/978-3-0348-6493-0_14. [DOI] [PubMed] [Google Scholar]
  4. Ciriolo M. R., Desideri A., Paci M., Rotilio G. Reconstitution of Cu,Zn-superoxide dismutase by the Cu(I).glutathione complex. J Biol Chem. 1990 Jul 5;265(19):11030–11034. [PubMed] [Google Scholar]
  5. Freedman J. H., Ciriolo M. R., Peisach J. The role of glutathione in copper metabolism and toxicity. J Biol Chem. 1989 Apr 5;264(10):5598–5605. [PubMed] [Google Scholar]
  6. Good M., Vasák M. Iron(II)-substituted metallothionein: evidence for the existence of iron-thiolate clusters. Biochemistry. 1986 Dec 30;25(26):8353–8356. doi: 10.1021/bi00374a003. [DOI] [PubMed] [Google Scholar]
  7. Krauter B., Nagel W., Hartmann H. J., Weser U. Copper-thionein in melanoma. Biochim Biophys Acta. 1989 Oct 9;1013(3):212–217. doi: 10.1016/0167-4889(89)90137-7. [DOI] [PubMed] [Google Scholar]
  8. Kägi J. H., Schäffer A. Biochemistry of metallothionein. Biochemistry. 1988 Nov 15;27(23):8509–8515. doi: 10.1021/bi00423a001. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Li T. Y., Kraker A. J., Shaw C. F., 3rd, Petering D. H. Ligand substitution reactions of metallothioneins with EDTA and apo-carbonic anhydrase. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6334–6338. doi: 10.1073/pnas.77.11.6334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McArdle H. J., Gross S. M., Creaser I., Sargeson A. M., Danks D. M. Effect of chelators on copper metabolism and copper pools in mouse hepatocytes. Am J Physiol. 1989 Apr;256(4 Pt 1):G667–G672. doi: 10.1152/ajpgi.1989.256.4.G667. [DOI] [PubMed] [Google Scholar]
  13. McArdle H. J., Kyriakou P., Grimes A., Mercer J. F., Danks D. M. The effect of D-penicillamine on metallothionein mRNA levels and copper distribution in mouse hepatocytes. Chem Biol Interact. 1990;75(3):315–324. doi: 10.1016/0009-2797(90)90074-w. [DOI] [PubMed] [Google Scholar]
  14. Morpurgo L., Rotilio G., Hartmann H. J., Weser U. Copper(I) transfer into apo-stellacyanin using copper(I)-thiourea as a copper-thionein model. Biochem J. 1984 Aug 1;221(3):923–925. doi: 10.1042/bj2210923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nielson K. B., Atkin C. L., Winge D. R. Distinct metal-binding configurations in metallothionein. J Biol Chem. 1985 May 10;260(9):5342–5350. [PubMed] [Google Scholar]
  16. Osterberg R., Ligaarden R., Persson D. Copper(I) complexes of penicillamine and glutathione. J Inorg Biochem. 1979 Jul;10(4):341–355. doi: 10.1016/s0162-0134(00)80200-7. [DOI] [PubMed] [Google Scholar]
  17. Palida F. A., Ettinger M. J. Identification of proteins involved in intracellular copper metabolism. Low levels of a approximately 48-kDa copper-binding protein in the brindled mouse model of Menkes disease. J Biol Chem. 1991 Mar 5;266(7):4586–4592. [PubMed] [Google Scholar]
  18. Rupp H., Weser U. Conversion of metallothionein into Cu-thionein, the possible low molecular weight form of neonatal hepatic mitochondrocuprein. FEBS Lett. 1974 Aug 30;44(3):293–297. doi: 10.1016/0014-5793(74)81161-0. [DOI] [PubMed] [Google Scholar]
  19. Sone T., Yamaoka K., Minami Y., Tsunoo H. Induction of metallothionein synthesis in Menkes' and normal lymphoblastoid cells is controlled by the level of intracellular copper. J Biol Chem. 1987 Apr 25;262(12):5878–5885. [PubMed] [Google Scholar]
  20. Suzuki Y., Lyall V., Biber T. U., Ford G. D. A modified technique for the measurement of sulfhydryl groups oxidized by reactive oxygen intermediates. Free Radic Biol Med. 1990;9(6):479–484. doi: 10.1016/0891-5849(90)90125-3. [DOI] [PubMed] [Google Scholar]
  21. Waalkes M. P., Goering P. L. Metallothionein and other cadmium-binding proteins: recent developments. Chem Res Toxicol. 1990 Jul-Aug;3(4):281–288. doi: 10.1021/tx00016a001. [DOI] [PubMed] [Google Scholar]
  22. Webb M. Toxicological significance of metallothionein. Experientia Suppl. 1987;52:109–134. doi: 10.1007/978-3-0348-6784-9_6. [DOI] [PubMed] [Google Scholar]
  23. Winge D. R., Nielson K. B., Gray W. R., Hamer D. H. Yeast metallothionein. Sequence and metal-binding properties. J Biol Chem. 1985 Nov 25;260(27):14464–14470. [PubMed] [Google Scholar]
  24. Winterbourn C. C., Munday R. Concerted action of reduced glutathione and superoxide dismutase in preventing redox cycling of dihydroxypyrimidines, and their role in antioxidant defence. Free Radic Res Commun. 1990;8(4-6):287–293. doi: 10.3109/10715769009053361. [DOI] [PubMed] [Google Scholar]
  25. Zelazowski A. J., Gasyna Z., Stillman M. J. Silver binding to rabbit liver metallothionein. Circular dichroism and emission study of silver-thiolate cluster formation with apometallothionein and the alpha and beta fragments. J Biol Chem. 1989 Oct 15;264(29):17091–17099. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES