Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Jun 15;292(Pt 3):797–803. doi: 10.1042/bj2920797

Pyrophosphate-dependent phosphofructokinase from the amoeba Naegleria fowleri, an AMP-sensitive enzyme.

E Mertens 1, J De Jonckheere 1, E Van Schaftingen 1
PMCID: PMC1134184  PMID: 8391256

Abstract

PPi-dependent phosphofructokinase (PPi-PFK) was detected in extracts of the amoeba Naegleria fowleri, with a specific activity of about 15-30 nmol/min per mg of protein, which was increased about 2-fold by 0.5 mM AMP. PPi-PFK was inactivated upon gel filtration and could be re-activated by incubation at 30 degrees C in the presence of AMP. N. fowleri PPi-PFK was purified more than 1100-fold to near homogeneity with a yield of about 25%. The pure enzyme had a specific activity of 65 mumol/min per mg of protein, and SDS/PAGE analysis showed a single band, of 51 kDa. Size-exclusion chromatography revealed the existence of two forms: a large one (approximately 180 kDa), presumably a tetramer, which was active, and a smaller one (approximately 45 kDa), presumably the monomer, which was inactive, but could be re-activated and converted into the large form by incubation at 30 degrees C in the presence of 0.5 mM AMP. Reactivation was also observed at 30 degrees C in the absence of AMP, particularly at higher enzyme concentration or in the presence of poly(ethylene glycol). Inactivation of the tetrameric enzyme was promoted by 0.25 M potassium thiocyanate. The enzyme displayed Km values of 10 and 15 microM for fructose 6-phosphate and PPi, respectively, in the forward reaction, and of 35 and 590 microM for fructose 1,6-bisphosphate and Pi in the backward reaction. The activity was dependent on the presence of Mg2+. AMP increased Vmax. about 2-fold without changing the affinity for the substrates; its half-maximal effect was observed at 2 microM.

Full text

PDF
797

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Clark C. G. Genome structure and evolution of Naegleria and its relatives. J Protozool. 1990 Jul-Aug;37(4):2S–6S. doi: 10.1111/j.1550-7408.1990.tb01138.x. [DOI] [PubMed] [Google Scholar]
  3. De Jonckheere J. Use of an axenic medium for differentiation between pathogenic and nonpathogenic Naegleria fowleri isolates. Appl Environ Microbiol. 1977 Apr;33(4):751–757. doi: 10.1128/aem.33.4.751-757.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deville-Bonne D., Le Bras G., Teschner W., Garel J. R. Ordered disruption of subunit interfaces during the stepwise reversible dissociation of Escherichia coli phosphofructokinase with KSCN. Biochemistry. 1989 Feb 21;28(4):1917–1922. doi: 10.1021/bi00430a073. [DOI] [PubMed] [Google Scholar]
  5. Fulton C., Webster C., Wu J. S. Chemically defined media for cultivation of Naegleria gruberi. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2406–2410. doi: 10.1073/pnas.81.8.2406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ingham K. C. Precipitation of proteins with polyethylene glycol. Methods Enzymol. 1990;182:301–306. doi: 10.1016/0076-6879(90)82025-w. [DOI] [PubMed] [Google Scholar]
  7. John D. T. Primary amebic meningoencephalitis and the biology of Naegleria fowleri. Annu Rev Microbiol. 1982;36:101–123. doi: 10.1146/annurev.mi.36.100182.000533. [DOI] [PubMed] [Google Scholar]
  8. Kruger N. J., Hammond J. B. Molecular Comparison of Pyrophosphate- and ATP-Dependent Fructose 6-Phosphate 1-Phosphotransferases from Potato Tuber. Plant Physiol. 1988 Mar;86(3):645–648. doi: 10.1104/pp.86.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Larondelle Y., Mertens E., Van Schaftingen E., Hers H. G. Purification and properties of spinach leaf phosphofructokinase 2/fructose 2,6-bisphosphatase. Eur J Biochem. 1986 Dec 1;161(2):351–357. doi: 10.1111/j.1432-1033.1986.tb10454.x. [DOI] [PubMed] [Google Scholar]
  11. Marciano-Cabral F. Biology of Naegleria spp. Microbiol Rev. 1988 Mar;52(1):114–133. doi: 10.1128/mr.52.1.114-133.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mertens E. Occurrence of pyrophosphate:fructose 6-phosphate 1-phosphotransferase in Giardia lamblia trophozoites. Mol Biochem Parasitol. 1990 Apr;40(1):147–149. doi: 10.1016/0166-6851(90)90088-4. [DOI] [PubMed] [Google Scholar]
  13. Mertens E. Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme? FEBS Lett. 1991 Jul 8;285(1):1–5. doi: 10.1016/0014-5793(91)80711-b. [DOI] [PubMed] [Google Scholar]
  14. Mertens E., Van Schaftingen E., Müller M. Presence of a fructose-2,6-bisphosphate-insensitive pyrophosphate: fructose-6-phosphate phosphotransferase in the anaerobic protozoa Tritrichomonas foetus, Trichomonas vaginalis and Isotricha prostoma. Mol Biochem Parasitol. 1989 Dec;37(2):183–190. doi: 10.1016/0166-6851(89)90150-3. [DOI] [PubMed] [Google Scholar]
  15. Nerad T. A., Visvesvara G., Daggett P. M. Chemically defined media for the cultivation of Naegleria: pathogenic and high temperature tolerant species. J Protozool. 1983 May;30(2):383–387. doi: 10.1111/j.1550-7408.1983.tb02935.x. [DOI] [PubMed] [Google Scholar]
  16. O'Brien W. E., Bowien S., Wood H. G. Isolation and characterization of a pyrophosphate-dependent phosphofructokinase from Propionibacterium shermanii. J Biol Chem. 1975 Nov 25;250(22):8690–8695. [PubMed] [Google Scholar]
  17. Peng Z. Y., Mansour T. E. Purification and properties of a pyrophosphate-dependent phosphofructokinase from Toxoplasma gondii. Mol Biochem Parasitol. 1992 Sep;54(2):223–230. doi: 10.1016/0166-6851(92)90114-y. [DOI] [PubMed] [Google Scholar]
  18. Pernin P., Cariou M. L., Jacquier A. Biochemical identification and phylogenetic relationships in free-living amoebas of the genus Naegleria. J Protozool. 1985 Nov;32(4):592–603. doi: 10.1111/j.1550-7408.1985.tb03085.x. [DOI] [PubMed] [Google Scholar]
  19. Reeves R. E., South D. J., Blytt H. J., Warren L. G. Pyrophosphate:D-fructose 6-phosphate 1-phosphotransferase. A new enzyme with the glycolytic function of 6-phosphofructokinase. J Biol Chem. 1974 Dec 25;249(24):7737–7741. [PubMed] [Google Scholar]
  20. Sabularse D. C., Anderson R. L. D-Fructose 2,6-bisphosphate: a naturally occurring activator for inorganic pyrophosphate:D-fructose-6-phosphate 1-phosphotransferase in plants. Biochem Biophys Res Commun. 1981 Dec 15;103(3):848–855. doi: 10.1016/0006-291x(81)90888-3. [DOI] [PubMed] [Google Scholar]
  21. Van Schaftingen E. Fructose 2,6-bisphosphate. Adv Enzymol Relat Areas Mol Biol. 1987;59:315–395. doi: 10.1002/9780470123058.ch7. [DOI] [PubMed] [Google Scholar]
  22. Van Schaftingen E., Lederer B., Bartrons R., Hers H. G. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem. 1982 Dec;129(1):191–195. doi: 10.1111/j.1432-1033.1982.tb07039.x. [DOI] [PubMed] [Google Scholar]
  23. Visvesvara G. S., Stehr-Green J. K. Epidemiology of free-living ameba infections. J Protozool. 1990 Jul-Aug;37(4):25S–33S. doi: 10.1111/j.1550-7408.1990.tb01142.x. [DOI] [PubMed] [Google Scholar]
  24. Weik R. R., John D. T. Cell and mitochondria respiration of Naegleria fowleri. J Parasitol. 1979 Oct;65(5):700–708. [PubMed] [Google Scholar]
  25. Weik R. R., John D. T. Cell size, macromolecular composition, and O2 consumption during agitated cultivation of Naegleria gruberi. J Protozool. 1977 Feb;24(1):196–200. doi: 10.1111/j.1550-7408.1977.tb05306.x. [DOI] [PubMed] [Google Scholar]
  26. Wood H. G., O'brien W. E., Micheales G. Properties of carboxytransphosphorylase; pyruvate, phosphate dikinase; pyrophosphate-phosphofructikinase and pyrophosphate-acetate kinase and their roles in the metabolism of inorganic pyrophosphate. Adv Enzymol Relat Areas Mol Biol. 1977;45:85–155. doi: 10.1002/9780470122907.ch2. [DOI] [PubMed] [Google Scholar]
  27. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]
  28. Yan T. F., Tao M. Multiple forms of pyrophosphate:D-fructose-6-phosphate 1-phosphotransferase from wheat seedlings. Regulation by fructose 2,6-bisphosphate. J Biol Chem. 1984 Apr 25;259(8):5087–5092. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES