Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 May 15;292(Pt 1):113–119. doi: 10.1042/bj2920113

Changes in lipoprotein lipase activities in adipose tissue, heart and skeletal muscle during continuous or interrupted feeding.

M C Sugden 1, M J Holness 1, R M Howard 1
PMCID: PMC1134276  PMID: 8503837

Abstract

Lipoprotein lipase (LPL) activities in parametrial and interscapular adipose tissue, soleus and adductor longus muscles and hearts of female rats were measured during progressive starvation, chow re-feeding after 24 h starvation and throughout dark and light phases in rats permitted unrestricted access to chow. Adipose-tissue LPL activities declined by 50% after 6 h starvation and continued to fall as the starvation period was extended to 24 h. Skeletal-muscle LPL activities dramatically increased between 9 and 12 h of starvation. Cardiac LPL activities increased 2.5-fold within 6 h of starvation, reaching a maximum after 12 h of starvation. Adipose-tissue LPL activities increased rapidly within 2 h of re-feeding chow ad libitum after 24 h starvation, achieving 'fed ad libitum' values after 6 h. Oxidative-skeletal-muscle LPL activities also increased after 2 h of refeeding and exceeded 'fed ad libitum' values throughout the 6 h re-feeding period. Cardiac LPL activities remained up-regulated for the 6 h of re-feeding. Adipose-tissue LPL activities exceeded those of cardiac or skeletal muscle throughout both light and dark phases. The lowest adipose-tissue LPL activities were observed at 9 h into the light phase. In contrast, cardiac LPL activity declined throughout the dark phase, with a minimum at 9 h into the dark phase. No such variation was observed for skeletal-muscle LPL activities. A diurnal nadir in plasma triacylglycerol (TG) concentrations coincided with the peak in cardiac LPL activities. The results demonstrate that, during unrestricted feeding and re-feeding after prolonged starvation, changes in skeletal-muscle and adipose-tissue LPL activities are neither reciprocal nor co-ordinate. Regulation of cardiac LPL activity during the diurnal cycle may be an important aspect of both of cardiac fuel selection and whole-body TG metabolism.

Full text

PDF
113

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartlett S. M., Gibbons G. F. Short- and longer-term regulation of very-low-density lipoprotein secretion by insulin, dexamethasone and lipogenic substrates in cultured hepatocytes. A biphasic effect of insulin. Biochem J. 1988 Jan 1;249(1):37–43. doi: 10.1042/bj2490037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borensztajn J., Otway S., Robinson D. S. Effect of fasting on the clearing factor lipase (lipoprotein lipase) activity of fresh and defatted preparations of rat heart muscle. J Lipid Res. 1970 Mar;11(2):102–110. [PubMed] [Google Scholar]
  3. Borensztajn J., Robinson D. S. The effect of fasting on the utilization of chylomicron triglyceride fatty acids in relation to clearing factor lipase (lipoprotein lipase) releasable by heparin in the perfused rat heart. J Lipid Res. 1970 Mar;11(2):111–117. [PubMed] [Google Scholar]
  4. Bruckdorfer K. R., Kang S. S., Khan I. H., Bourne A. R., Yudkin J. Diurnal changes in the concentrations of plasma lipids, sugars, insulin and corticosterone in rats fed diets containing various carbohydrates. Horm Metab Res. 1974 Mar;6(2):99–106. doi: 10.1055/s-0028-1093890. [DOI] [PubMed] [Google Scholar]
  5. Cruz M. L., Williamson D. H. Refeeding meal-fed rats increases lipoprotein lipase activity and deposition of dietary [14C]lipid in white adipose tissue and decreases oxidation to 14CO2. The role of undernutrition. Biochem J. 1992 Aug 1;285(Pt 3):773–778. doi: 10.1042/bj2850773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Friedman G., Stein O., Stein Y. Stimulation of rat heart lipoprotein lipase activity by 4-aminopyrazolo[3,4-d]pyrimidine-induced reduction of plasma triacylglycerol. FEBS Lett. 1979 Apr 15;100(2):371–373. doi: 10.1016/0014-5793(79)80372-5. [DOI] [PubMed] [Google Scholar]
  7. Garfinkel A. G., Nilsson-ehle P., Schotz M. C. Regulation of lipoprotein lipase. Induction by insulin. Biochim Biophys Acta. 1976 Feb 23;424(2):264–273. doi: 10.1016/0005-2760(76)90194-6. [DOI] [PubMed] [Google Scholar]
  8. Garfinkel A. S., Baker N., Schotz M. C. Relationship of lipoprotein lipase activity to triglyceride uptake in adipose tissue. J Lipid Res. 1967 May;8(3):274–280. [PubMed] [Google Scholar]
  9. Holness M. J., Howard R. M., Sugden M. C. Glucose utilization and disposition by skeletal muscle during unrestricted feeding. Biochem J. 1992 Sep 1;286(Pt 2):395–398. doi: 10.1042/bj2860395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holness M. J., Liu Y. L., Beech J. S., Sugden M. C. Glucose utilization by interscapular brown adipose tissue in vivo during nutritional transitions in the rat. Biochem J. 1991 Jan 1;273(Pt 1):233–235. doi: 10.1042/bj2730233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holness M. J., Liu Y. L., Sugden M. C. Time courses of the responses of pyruvate dehydrogenase activities to short-term starvation in diaphragm and selected skeletal muscles of the rat. Biochem J. 1989 Dec 15;264(3):771–776. doi: 10.1042/bj2640771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holness M. J., Sugden M. C. Glucose disposal by skeletal muscle in response to re-feeding after progressive starvation. Biochem J. 1991 Jul 15;277(Pt 2):429–433. doi: 10.1042/bj2770429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holness M. J., Sugden M. C. Glucose utilization in heart, diaphragm and skeletal muscle during the fed-to-starved transition. Biochem J. 1990 Aug 15;270(1):245–249. doi: 10.1042/bj2700245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holness M. J., Sugden M. C. Pyruvate dehydrogenase activities and rates of lipogenesis during the fed-to-starved transition in liver and brown adipose tissue of the rat. Biochem J. 1990 May 15;268(1):77–81. doi: 10.1042/bj2680077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holness M. J., Sugden M. C. Pyruvate dehydrogenase activities during the fed-to-starved transition and on re-feeding after acute or prolonged starvation. Biochem J. 1989 Mar 1;258(2):529–533. doi: 10.1042/bj2580529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KORN E. D. Clearing factor, a heparin-activated lipoprotein lipase. I. Isolation and characterization of the enzyme from normal rat heart. J Biol Chem. 1955 Jul;215(1):1–14. [PubMed] [Google Scholar]
  17. Kiens B., Lithell H., Mikines K. J., Richter E. A. Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action. J Clin Invest. 1989 Oct;84(4):1124–1129. doi: 10.1172/JCI114275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kimura T., Maji T., Ashida K. Periodicity of food intake and lipogenesis in rats subjected to two different feeding plans. J Nutr. 1970 Jun;100(6):691–697. doi: 10.1093/jn/100.6.691. [DOI] [PubMed] [Google Scholar]
  19. Linder C., Chernick S. S., Fleck T. R., Scow R. O. Lipoprotein lipase and uptake of chylomicron triglyceride by skeletal muscle of rats. Am J Physiol. 1976 Sep;231(3):860–864. doi: 10.1152/ajplegacy.1976.231.3.860. [DOI] [PubMed] [Google Scholar]
  20. Mangiapane E. H., Brindley D. N. Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes. Biochem J. 1986 Jan 1;233(1):151–160. doi: 10.1042/bj2330151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marrino P., Gavish D., Shafrir E., Eisenberg S. Diurnal variations of plasma lipids, tissue and plasma lipoprotein lipase, and VLDL secretion rates in the rat. A model for studies of VLDL metabolism. Biochim Biophys Acta. 1987 Aug 15;920(3):277–284. doi: 10.1016/0005-2760(87)90105-6. [DOI] [PubMed] [Google Scholar]
  22. Munday M. R., Williamson D. H. Diurnal variations in food intake and in lipogenesis in mammary gland and liver of lactating rats. Biochem J. 1983 Jul 15;214(1):183–187. doi: 10.1042/bj2140183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nilsson-Ehle P., Schotz M. C. A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res. 1976 Sep;17(5):536–541. [PubMed] [Google Scholar]
  24. Otway S., Robinson D. S. The use of a non-ionic detergent (Triton WR 1339) to determine rates of triglyceride entry into the circulation of the rat under different physiological conditions. J Physiol. 1967 May;190(2):321–332. doi: 10.1113/jphysiol.1967.sp008211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. ROBINSON D. S. THE CLEARING FACTOR LIPASE AND ITS ACTION IN THE TRANSPORT OF FATTY ACIDS BETWEEN THE BLOOD AND TISSUES. Adv Lipid Res. 1963;1:133–182. doi: 10.1016/b978-1-4831-9937-5.50010-7. [DOI] [PubMed] [Google Scholar]
  26. Radomski M. W., Orme T. Response of lipoprotein lipase in various tissues to cold exposure. Am J Physiol. 1971 Jun;220(6):1852–1856. doi: 10.1152/ajplegacy.1971.220.6.1852. [DOI] [PubMed] [Google Scholar]
  27. Robinson D. S., Speake B. K. Role of insulin and other hormones in the control of lipoprotein lipase activity. Biochem Soc Trans. 1989 Feb;17(1):40–42. doi: 10.1042/bst0170040. [DOI] [PubMed] [Google Scholar]
  28. Saxena U., Goldberg I. J. Interaction of lipoprotein lipase with glycosaminoglycans and apolipoprotein C-II: effects of free-fatty-acids. Biochim Biophys Acta. 1990 Apr 2;1043(2):161–168. doi: 10.1016/0005-2760(90)90291-5. [DOI] [PubMed] [Google Scholar]
  29. Saxena U., Witte L. D., Goldberg I. J. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids. J Biol Chem. 1989 Mar 15;264(8):4349–4355. [PubMed] [Google Scholar]
  30. Scanu A. M. Factors affecting lipoprotein metabolism. Adv Lipid Res. 1965;3:63–138. [PubMed] [Google Scholar]
  31. Sugden M. C., Holness M. J. Effects of re-feeding after prolonged starvation on pyruvate dehydrogenase activities in heart, diaphragm and selected skeletal muscles of the rat. Biochem J. 1989 Sep 1;262(2):669–672. doi: 10.1042/bj2620669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sugden M. C., Liu Y. L., Holness M. J. Glucose utilization and disposal in cardiothoracic and skeletal muscles during the starved-to-fed transition in the rat. Biochem J. 1990 Nov 15;272(1):133–137. doi: 10.1042/bj2720133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tan M. H., Sata T., Havel R. J. The significance of lipoprotein lipase in rat skeletal muscles. J Lipid Res. 1977 May;18(3):363–370. [PubMed] [Google Scholar]
  34. Wilson D. E., Zeikus R., Chan I. F. Relationship of organ lipoprotein lipase activity and ketonuria to hypertriglyceridemia in starved and streptozocin-induced diabetic rats. Diabetes. 1987 Apr;36(4):485–490. doi: 10.2337/diab.36.4.485. [DOI] [PubMed] [Google Scholar]
  35. de Gasquet P., Pequignot E. Changes in adipose tissue and heart lipoprotein lipase activities and in serum glucose, insulin and corticosterone concentrations in rats adapted to a daily meal. Horm Metab Res. 1973 Nov;5(6):440–443. doi: 10.1055/s-0028-1093903. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES