Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 May 15;292(Pt 1):249–252. doi: 10.1042/bj2920249

Modulation of murine hepatic lipase activity by exogenous and endogenous Kupffer-cell activation.

D B Magilavy 1, R Zhan 1, D D Black 1
PMCID: PMC1134296  PMID: 8503853

Abstract

Deficiency of hepatic lipase (HL) may play a role in the lipoprotein abnormalities in chronic inflammatory states which are characterized by reticuloendothelial-system activation and cytokine release. HL triacylglycerol hydrolase activity was measured in heparin perfusates of livers from autoimmune MRL/lpr mice, which spontaneously develop a condition closely resembling human lupus erythematosis and exhibit spontaneous Kupffer-cell activation after 8 weeks of age, as well as from normal mice treated with Corynebacterium parvum or polyinosinic-polycytidylic acid complex [poly(I.C)] to induce Kupffer-cell activation. HL activity in MRL/lpr mice older than 8 weeks was 29.5% (P = 0.002) of that in age-matched control MRL/++ mice. Treatment of normal mice with C. parvum or poly(I.C) resulted in HL activities 18.6% (P = 0.004) and 13.1% (P = 0.007) respectively of untreated controls. Northern-blot hybridization of liver poly(A)+ RNA showed no differences in HL mRNA abundance in MRL/++ mice compared with the MRL/lpr autoimmune strain after 8 weeks of age, or in normal control mice compared with those treated with C. parvum, indicating attenuation of HL activity at the translational or post-translational level. Deficiency of this enzyme may represent one of the mechanisms contributing to the dyslipoproteinaemia of autoimmune disease and chronic infection.

Full text

PDF
249

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso S., Minty A., Bourlet Y., Buckingham M. Comparison of three actin-coding sequences in the mouse; evolutionary relationships between the actin genes of warm-blooded vertebrates. J Mol Evol. 1986;23(1):11–22. doi: 10.1007/BF02100994. [DOI] [PubMed] [Google Scholar]
  2. Beutler B., Cerami A. The biology of cachectin/TNF--a primary mediator of the host response. Annu Rev Immunol. 1989;7:625–655. doi: 10.1146/annurev.iy.07.040189.003205. [DOI] [PubMed] [Google Scholar]
  3. Black D. D., Freeman M. R., Sabesin S. M. Lipoprotein lipase and hepatic lipase deficiencies associated with impaired chylomicron clearance in D-(+) galactosamine hepatitis. Metabolism. 1982 Jun;31(6):620–626. doi: 10.1016/0026-0495(82)90102-0. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Cornelius P., Enerback S., Bjursell G., Olivecrona T., Pekala P. H. Regulation of lipoprotein lipase mRNA content in 3T3-L1 cells by tumour necrosis factor. Biochem J. 1988 Feb 1;249(3):765–769. doi: 10.1042/bj2490765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ettinger W. H., Goldberg A. P., Applebaum-Bowden D., Hazzard W. R. Dyslipoproteinemia in systemic lupus erythematosus. Effect of corticosteroids. Am J Med. 1987 Sep;83(3):503–508. doi: 10.1016/0002-9343(87)90762-5. [DOI] [PubMed] [Google Scholar]
  7. Falko J. M., Williams J. C., Harvey D. G., Weidman S. W., Schonfeld G., Dodson W. E. Hyperlipoproteinemia and multifocal neurologic dysfunction in systemic lupus erythematosus. J Pediatr. 1979 Oct;95(4):523–529. doi: 10.1016/s0022-3476(79)80755-6. [DOI] [PubMed] [Google Scholar]
  8. Fried S. K., Zechner R. Cachectin/tumor necrosis factor decreases human adipose tissue lipoprotein lipase mRNA levels, synthesis, and activity. J Lipid Res. 1989 Dec;30(12):1917–1923. [PubMed] [Google Scholar]
  9. Grosser J., Schrecker O., Greten H. Function of hepatic triglyceride lipase in lipoprotein metabolism. J Lipid Res. 1981 Mar;22(3):437–442. [PubMed] [Google Scholar]
  10. Grunfeld C., Gulli R., Moser A. H., Gavin L. A., Feingold K. R. Effect of tumor necrosis factor administration in vivo on lipoprotein lipase activity in various tissues of the rat. J Lipid Res. 1989 Apr;30(4):579–585. [PubMed] [Google Scholar]
  11. Hashimoto S., Seyama Y., Yokokura T., Mutai M. Cytotoxic factor production by Kupffer cells elicited with Lactobacillus casei and Corynebacterium parvum. Cancer Immunol Immunother. 1985;20(2):117–121. doi: 10.1007/BF00205677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ilowite N. T., Samuel P., Ginzler E., Jacobson M. S. Dyslipoproteinemia in pediatric systemic lupus erythematosus. Arthritis Rheum. 1988 Jul;31(7):859–863. doi: 10.1002/art.1780310706. [DOI] [PubMed] [Google Scholar]
  13. Jansen H., van Tol A., Hülsmann W. C. On the metabolic function of heparin-releasable liver lipase. Biochem Biophys Res Commun. 1980 Jan 15;92(1):53–59. doi: 10.1016/0006-291x(80)91518-1. [DOI] [PubMed] [Google Scholar]
  14. Kihara S., Matsuzawa Y., Kubo M., Nozaki S., Funahashi T., Yamashita S., Sho N., Tarui S. Autoimmune hyperchylomicronemia. N Engl J Med. 1989 May 11;320(19):1255–1259. doi: 10.1056/NEJM198905113201906. [DOI] [PubMed] [Google Scholar]
  15. Knauer T. E., Woods J. A., Lamb R. G., Fallon H. J. Hepatic triacylglycerol lipase activities after induction of diabetes and administration of insulin or glucagon. J Lipid Res. 1982 May;23(4):631–637. [PubMed] [Google Scholar]
  16. Magilavy D. B., Hundley T. R., Steinberg A. D., Katona I. M. Hepatic reticuloendothelial system activation in autoimmune mice: differences between (NZB X NZW)F1 and MRL-lpr/lpr strains. Clin Immunol Immunopathol. 1987 Mar;42(3):386–398. doi: 10.1016/0090-1229(87)90027-4. [DOI] [PubMed] [Google Scholar]
  17. Magilavy D. B., Rothstein J. L. Spontaneous production of tumor necrosis factor alpha by Kupffer cells of MRL/lpr mice. J Exp Med. 1988 Aug 1;168(2):789–794. doi: 10.1084/jem.168.2.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Masuno H., Tsujita T., Nakanishi H., Yoshida A., Fukunishi R., Okuda H. Lipoprotein lipase-like activity in the liver of mice with Sarcoma 180. J Lipid Res. 1984 May;25(5):419–427. [PubMed] [Google Scholar]
  19. Meller J., Conde C. A., Deppisch L. M., Donoso E., Dack S. Myocardial infarction due to coronary atherosclerosis in three young adults with systemic lupus erythematosus. Am J Cardiol. 1975 Feb;35(2):309–314. doi: 10.1016/0002-9149(75)90019-3. [DOI] [PubMed] [Google Scholar]
  20. Nawroth P. P., Bank I., Handley D., Cassimeris J., Chess L., Stern D. Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin 1. J Exp Med. 1986 Jun 1;163(6):1363–1375. doi: 10.1084/jem.163.6.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nilsson-Ehle P., Garfinkel A. S., Schotz M. C. Lipolytic enzymes and plasma lipoprotein metabolism. Annu Rev Biochem. 1980;49:667–693. doi: 10.1146/annurev.bi.49.070180.003315. [DOI] [PubMed] [Google Scholar]
  22. Nomura T., Iguchi A., Matsunaga H., Sakamoto N. The effects of fasting and streptozotocin diabetes on the triglyceride lipase activity of rat liver plasma membranes. Lipids. 1982 Aug;17(8):573–575. doi: 10.1007/BF02535387. [DOI] [PubMed] [Google Scholar]
  23. Onongbu I. C., Onyeneke E. C. Plasma lipid changes in human malaria. Tropenmed Parasitol. 1983 Sep;34(3):193–196. [PubMed] [Google Scholar]
  24. Patton J. S., Shepard H. M., Wilking H., Lewis G., Aggarwal B. B., Eessalu T. E., Gavin L. A., Grunfeld C. Interferons and tumor necrosis factors have similar catabolic effects on 3T3 L1 cells. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8313–8317. doi: 10.1073/pnas.83.21.8313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Peterson J., Bengtsson-Olivecrona G., Olivecrona T. Mouse preheparin plasma contains high levels of hepatic lipase with low affinity for heparin. Biochim Biophys Acta. 1986 Aug 14;878(1):65–70. doi: 10.1016/0005-2760(86)90344-9. [DOI] [PubMed] [Google Scholar]
  26. Price S. R., Olivecrona T., Pekala P. H. Regulation of lipoprotein lipase synthesis by recombinant tumor necrosis factor--the primary regulatory role of the hormone in 3T3-L1 adipocytes. Arch Biochem Biophys. 1986 Dec;251(2):738–746. doi: 10.1016/0003-9861(86)90384-x. [DOI] [PubMed] [Google Scholar]
  27. Sammalkorpi K., Valtonen V., Kerttula Y., Nikkilä E., Taskinen M. R. Changes in serum lipoprotein pattern induced by acute infections. Metabolism. 1988 Sep;37(9):859–865. doi: 10.1016/0026-0495(88)90120-5. [DOI] [PubMed] [Google Scholar]
  28. Saxena U., Witte L. D., Goldberg I. J. Tumor necrosis factor induced release of endothelial cell lipoprotein lipase. Arteriosclerosis. 1990 May-Jun;10(3):470–476. doi: 10.1161/01.atv.10.3.470. [DOI] [PubMed] [Google Scholar]
  29. Semb H., Peterson J., Tavernier J., Olivecrona T. Multiple effects of tumor necrosis factor on lipoprotein lipase in vivo. J Biol Chem. 1987 Jun 15;262(17):8390–8394. [PubMed] [Google Scholar]
  30. Silva C. L., Faccioli L. H., Rocha G. M. The role of cachectin/TNF in the pathogenesis of tuberculosis. Braz J Med Biol Res. 1988;21(3):489–492. [PubMed] [Google Scholar]
  31. Theofilopoulos A. N., Dixon F. J. Murine models of systemic lupus erythematosus. Adv Immunol. 1985;37:269–390. doi: 10.1016/s0065-2776(08)60342-9. [DOI] [PubMed] [Google Scholar]
  32. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zechner R., Newman T. C., Sherry B., Cerami A., Breslow J. L. Recombinant human cachectin/tumor necrosis factor but not interleukin-1 alpha downregulates lipoprotein lipase gene expression at the transcriptional level in mouse 3T3-L1 adipocytes. Mol Cell Biol. 1988 Jun;8(6):2394–2401. doi: 10.1128/mcb.8.6.2394. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES