Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 May 15;292(Pt 1):271–276. doi: 10.1042/bj2920271

Characterization of phosphoinositide-specific phospholipase C in rat colonocyte membranes.

M J Bolt 1, B M Bissonnette 1, R K Wali 1, S C Hartmann 1, T A Brasitus 1, M D Sitrin 1
PMCID: PMC1134300  PMID: 8389128

Abstract

The phosphoinositide signal transduction pathway mediates important processes in intestinal physiology, yet the key enzyme, phosphoinositide-specific phospholipase C (PI-PLC), is not well-characterized in the colon. PI-PLC activity was examined in rat colonic membranes using exogenous [3H]phosphatidylinositol 4,5-bisphosphate (PIP2) as substrate, and beta-glycerophosphate to suppress degradation of substrate or product. The activity of membrane PI-PLC increased 6-fold with the addition of alamethicin, and a further 2-3-fold enhancement was observed with 10 microM guanosine 5'-[gamma-thio]triphosphate (GTP[S]), suggesting the involvement of G-protein(s). The effect of GTP[S] appeared to be specific, as up to 100 microM adenosine 5'-[gamma-thio]-triphosphate failed to stimulate PI-PLC activity, and guanosine 5'-[beta-thio]diphosphate inhibited activity. The response of membrane PI-PLC to Ca2+ was biphasic, while > 0.5 mM Mg2+ was inhibitory with or without GTP[S]. Comparable total PI-PLC activities and responses to GTP[S] and Ca2+ were observed in purified brush-border and basolateral membranes. Western immunoblots probed with monoclonal antibodies to PLC isoenzymes PLC-beta 1, -gamma 1 and -delta 1 demonstrated that these antipodal plasma membranes contain predominantly the PLC-delta 1 isoform, with small amounts of PLC-gamma 1 present but no detectable PLC-beta 1. PLC-gamma 1 was the major isoform detected in cytosol.

Full text

PDF
271

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn J., Chang E. B., Field M. Phorbol ester inhibition of Na-H exchange in rabbit proximal colon. Am J Physiol. 1985 Nov;249(5 Pt 1):C527–C530. doi: 10.1152/ajpcell.1985.249.5.C527. [DOI] [PubMed] [Google Scholar]
  2. Banno Y., Nozawa Y. Characterization of partially purified phospholipase C from human platelet membranes. Biochem J. 1987 Nov 15;248(1):95–101. doi: 10.1042/bj2480095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banno Y., Yada Y., Nozawa Y. Purification and characterization of membrane-bound phospholipase C specific for phosphoinositides from human platelets. J Biol Chem. 1988 Aug 15;263(23):11459–11465. [PubMed] [Google Scholar]
  4. Bers D. M. A simple method for the accurate determination of free [Ca] in Ca-EGTA solutions. Am J Physiol. 1982 May;242(5):C404–C408. doi: 10.1152/ajpcell.1982.242.5.C404. [DOI] [PubMed] [Google Scholar]
  5. Blank J. L., Ross A. H., Exton J. H. Purification and characterization of two G-proteins that activate the beta 1 isozyme of phosphoinositide-specific phospholipase C. Identification as members of the Gq class. J Biol Chem. 1991 Sep 25;266(27):18206–18216. [PubMed] [Google Scholar]
  6. Bonnafous J. C., Dornand J., Mani J. C. Detergent-like effects of alamethicin on lymphocyte plasma membranes. Biochem Biophys Res Commun. 1979 Feb 14;86(3):536–544. doi: 10.1016/0006-291x(79)91747-9. [DOI] [PubMed] [Google Scholar]
  7. Brasitus T. A., Keresztes R. S. Isolation and partial characterization of basolateral membranes from rat proximal colonic epithelial cells. Biochim Biophys Acta. 1983 Feb 9;728(1):11–19. doi: 10.1016/0005-2736(83)90431-5. [DOI] [PubMed] [Google Scholar]
  8. Brasitus T. A., Keresztes R. S. Protein-lipid interactions in antipodal plasma membranes of rat colonocytes. Biochim Biophys Acta. 1984 Jun 27;773(2):290–300. doi: 10.1016/0005-2736(84)90093-2. [DOI] [PubMed] [Google Scholar]
  9. Carter H. R., Wallace M. A., Fain J. N. Activation of phospholipase C in rabbit brain membranes by carbachol in the presence of GTP gamma S; effects of biological detergents. Biochim Biophys Acta. 1990 Aug 13;1054(1):129–135. doi: 10.1016/0167-4889(90)90214-x. [DOI] [PubMed] [Google Scholar]
  10. Claro E., Wallace M. A., Lee H. M., Fain J. N. Carbachol in the presence of guanosine 5'-O-(3-thiotriphosphate) stimulates the breakdown of exogenous phosphatidylinositol 4,5-bisphosphate, phosphatidylinositol 4-phosphate, and phosphatidylinositol by rat brain membranes. J Biol Chem. 1989 Nov 5;264(31):18288–18295. [PubMed] [Google Scholar]
  11. Cockcroft S., Geny B., Thomas G. M. Regulation of cytosolic phosphoinositide-phospholipase C by G-protein, Gp. Biochem Soc Trans. 1991 Apr;19(2):299–302. doi: 10.1042/bst0190299. [DOI] [PubMed] [Google Scholar]
  12. Cohen M. E., Wesolek J., McCullen J., Rys-Sikora K., Pandol S., Rood R. P., Sharp G. W., Donowitz M. Carbachol- and elevated Ca(2+)-induced translocation of functionally active protein kinase C to the brush border of rabbit ileal Na+ absorbing cells. J Clin Invest. 1991 Sep;88(3):855–863. doi: 10.1172/JCI115387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cohn J. A. Protein kinase C mediates cholinergically regulated protein phosphorylation in a Cl(-)-secreting epithelium. Am J Physiol. 1990 Feb;258(2 Pt 1):C227–C233. doi: 10.1152/ajpcell.1990.258.2.C227. [DOI] [PubMed] [Google Scholar]
  14. Craven P. A., DeRubertis F. R. Alterations in protein kinase C in 1,2-dimethylhydrazine induced colonic carcinogenesis. Cancer Res. 1992 Apr 15;52(8):2216–2221. [PubMed] [Google Scholar]
  15. Craven P. A., Pfanstiel J., DeRubertis F. R. Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation and reactive oxygen formation by bile acids. J Clin Invest. 1987 Feb;79(2):532–541. doi: 10.1172/JCI112844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Crooke S. T., Bennett C. F. Mammalian phosphoinositide-specific phospholipase C isoenzymes. Cell Calcium. 1989 Jul;10(5):309–323. doi: 10.1016/0143-4160(89)90057-2. [DOI] [PubMed] [Google Scholar]
  17. Donowitz M., Cheng H. Y., Sharp G. W. Effects of phorbol esters on sodium and chloride transport in rat colon. Am J Physiol. 1986 Oct;251(4 Pt 1):G509–G517. doi: 10.1152/ajpgi.1986.251.4.G509. [DOI] [PubMed] [Google Scholar]
  18. Donowitz M., Cohen M. E., Gould M., Sharp G. W. Elevated intracellular Ca2+ acts through protein kinase C to regulate rabbit ileal NaCl absorption. Evidence for sequential control by Ca2+/calmodulin and protein kinase C. J Clin Invest. 1989 Jun;83(6):1953–1962. doi: 10.1172/JCI114104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Donowitz M., Cusolito S., Sharp G. W. Effects of calcium antagonist TMB-8 on active Na and Cl transport in rabbit ileum. Am J Physiol. 1986 May;250(5 Pt 1):G691–G697. doi: 10.1152/ajpgi.1986.250.5.G691. [DOI] [PubMed] [Google Scholar]
  20. Felder C. C., Blecher M., Jose P. A. Dopamine-1-mediated stimulation of phospholipase C activity in rat renal cortical membranes. J Biol Chem. 1989 May 25;264(15):8739–8745. [PubMed] [Google Scholar]
  21. Higashijima T., Burnier J., Ross E. M. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J Biol Chem. 1990 Aug 25;265(24):14176–14186. [PubMed] [Google Scholar]
  22. Hiramatsu Y., Horn V. J., Baum B. J., Ambudkar I. S. Characterization of polyphosphoinositide-specific phospholipase C in rat parotid gland membranes. Arch Biochem Biophys. 1992 Sep;297(2):368–376. doi: 10.1016/0003-9861(92)90686-q. [DOI] [PubMed] [Google Scholar]
  23. Koch C. A., Anderson D., Moran M. F., Ellis C., Pawson T. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science. 1991 May 3;252(5006):668–674. doi: 10.1126/science.1708916. [DOI] [PubMed] [Google Scholar]
  24. Kopp R., Mayer P., Pfeiffer A. Agonist-induced desensitization of cholinergically stimulated phosphoinositide breakdown is independent of endogenously activated protein kinase C in HT-29 human colon carcinoma cells. Biochem J. 1990 Jul 1;269(1):73–78. doi: 10.1042/bj2690073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lieberherr M., Grosse B., Duchambon P., Drüeke T. A functional cell surface type receptor is required for the early action of 1,25-dihydroxyvitamin D3 on the phosphoinositide metabolism in rat enterocytes. J Biol Chem. 1989 Dec 5;264(34):20403–20406. [PubMed] [Google Scholar]
  26. Litosch I. G protein regulation of phospholipase C activity in a membrane-solubilized system occurs through a Mg2(+)- and time-dependent mechanism. J Biol Chem. 1991 Mar 15;266(8):4764–4771. [PubMed] [Google Scholar]
  27. Litosch I. Guanine nucleotide and NaF stimulation of phospholipase C activity in rat cerebral-cortical membranes. Studies on substrate specificity. Biochem J. 1987 May 15;244(1):35–40. doi: 10.1042/bj2440035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McPherson G. A. Paradoxical digestion of myo-inositol phosphates by alkaline phosphatase at low pH. Life Sci. 1990;47(17):1569–1577. doi: 10.1016/0024-3205(90)90186-u. [DOI] [PubMed] [Google Scholar]
  29. Palmer S., Hawkins P. T., Michell R. H., Kirk C. J. The labelling of polyphosphoinositides with [32P]Pi and the accumulation of inositol phosphates in vasopressin-stimulated hepatocytes. Biochem J. 1986 Sep 1;238(2):491–499. doi: 10.1042/bj2380491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Reinlib L., Homaidan F., Watson A., Bredt D. S., Sharp G. W., Zahniser D., Donowitz M. Uncoupling of phospholipase C from receptor regulation of [Ca2+]i in T84 colonic cells by prolonged exposure to phorbol dibutyrate. J Biol Chem. 1991 Sep 25;266(27):17904–17911. [PubMed] [Google Scholar]
  31. Rhee S. G., Kim H., Suh P. G., Choi W. C. Multiple forms of phosphoinositide-specific phospholipase C and different modes of activation. Biochem Soc Trans. 1991 Apr;19(2):337–341. doi: 10.1042/bst0190337. [DOI] [PubMed] [Google Scholar]
  32. Ross E. M. Signal sorting and amplification through G protein-coupled receptors. Neuron. 1989 Aug;3(2):141–152. doi: 10.1016/0896-6273(89)90027-5. [DOI] [PubMed] [Google Scholar]
  33. Rubiera C., Lazo P. S., Shears S. B. Polarized subcellular distribution of the 1-, 4- and 5-phosphatase activities that metabolize inositol 1,4,5-trisphosphate in intestinal epithelial cells. Biochem J. 1990 Jul 15;269(2):353–358. doi: 10.1042/bj2690353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ryu S. H., Cho K. S., Lee K. Y., Suh P. G., Rhee S. G. Purification and characterization of two immunologically distinct phosphoinositide-specific phospholipases C from bovine brain. J Biol Chem. 1987 Sep 15;262(26):12511–12518. [PubMed] [Google Scholar]
  35. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  36. Simon M. I., Strathmann M. P., Gautam N. Diversity of G proteins in signal transduction. Science. 1991 May 10;252(5007):802–808. doi: 10.1126/science.1902986. [DOI] [PubMed] [Google Scholar]
  37. Taylor S. J., Exton J. H. Guanine-nucleotide and hormone regulation of polyphosphoinositide phospholipase C activity of rat liver plasma membranes. Bivalent-cation and phospholipid requirements. Biochem J. 1987 Dec 15;248(3):791–799. doi: 10.1042/bj2480791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vaandrager A. B., Ploemacher M. C., De Jonge H. R. Phosphoinositide metabolism in intestinal brush borders: stimulation of IP3 formation by guanine nucleotides and Ca2+. Am J Physiol. 1990 Sep;259(3 Pt 1):G410–G419. doi: 10.1152/ajpgi.1990.259.3.G410. [DOI] [PubMed] [Google Scholar]
  40. Wali R. K., Baum C. L., Bolt M. J., Brasitus T. A., Sitrin M. D. 1,25-dihydroxyvitamin D3 inhibits Na(+)-H+ exchange by stimulating membrane phosphoinositide turnover and increasing cytosolic calcium in CaCo-2 cells. Endocrinology. 1992 Sep;131(3):1125–1133. doi: 10.1210/endo.131.3.1324151. [DOI] [PubMed] [Google Scholar]
  41. Wali R. K., Baum C. L., Sitrin M. D., Bolt M. J., Dudeja P. K., Brasitus T. A. Effect of vitamin D status on the rapid actions of 1,25-dihydroxycholecalciferol in rat colonic membranes. Am J Physiol. 1992 Jun;262(6 Pt 1):G945–G953. doi: 10.1152/ajpgi.1992.262.6.G945. [DOI] [PubMed] [Google Scholar]
  42. Wali R. K., Baum C. L., Sitrin M. D., Brasitus T. A. 1,25(OH)2 vitamin D3 stimulates membrane phosphoinositide turnover, activates protein kinase C, and increases cytosolic calcium in rat colonic epithelium. J Clin Invest. 1990 Apr;85(4):1296–1303. doi: 10.1172/JCI114567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wali R. K., Bolt M. J., Tien X. Y., Brasitus T. A., Sitrin M. D. Differential effect of 1,25-dihydroxycholecalciferol on phosphoinositide turnover in the antipodal plasma membranes of colonic epithelial cells. Biochem Biophys Res Commun. 1992 Sep 16;187(2):1128–1134. doi: 10.1016/0006-291x(92)91314-g. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES