Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Jul 15;293(Pt 2):537–544. doi: 10.1042/bj2930537

Inactivation of the endogenous argininosuccinate lyase activity of duck delta-crystallin by modification of an essential histidine residue with diethyl pyrocarbonate.

H J Lee 1, S H Chiou 1, G G Chang 1
PMCID: PMC1134395  PMID: 8343133

Abstract

The argininosuccinate lyase activity of duck delta-crystallin was inactivated by diethyl pyrocarbonate at 0 degrees C and pH 7.5. The inactivation followed pseudo-first-order kinetics after appropriate correction for the decomposition of the reagent during the modification period. The plot of the observed pseudo-first-order rate constant versus diethyl pyrocarbonate concentration in the range of 0.17-1.7 mM was linear and went through the origin with a second-order rate constant of 1.45 +/- 0.1 M-1.s-1. The double-logarithmic plot was also linear, with slope of 1.13, which suggested a 1:1 stoichiometry for the reaction between diethyl pyrocarbonate and delta-crystallin. L-Arginine, L-norvaline or L-citrulline protected the argininosuccinate lyase activity of delta-crystallin from diethyl pyrocarbonate inactivation. The dissociation constants for the delta-crystallin-L-arginine and delta-crystallin-L-citrulline binary complexes, determined by the protection experiments, were 4.2 +/- 0.2 and 0.12 +/- 0.04 mM respectively. Fumarate alone had no protective effect. However, fumarate plus L-arginine gave synergistic protection with a ligand binding interacting factor of 0.12 +/- 0.02. The double-protection data conformed to a random Uni Bi kinetic mechanism. Fluorescence-quenching studies indicated that the modified delta-crystallin had minimum, if any, conformational changes as compared with the native delta-crystallin. Inactivation of the enzyme activity was accompanied by an increasing absorbance at 240 nm of the protein. The absorption near 280 nm did not change. Treatment of the modified protein with hydroxylamine regenerated the enzyme activity to the original level. These results strongly indicated the modification of an essential histidine residue. Calculation from the 240 nm absorption changes indicated that only one histidine residue per subunit was modified by the reagent. This super-active histidine residue has a pKa value of approximately 6.8 and acts as a general acid-base catalyst in the enzyme reaction mechanism. Our experimental data are compatible with an E1cB mechanism [Raushel (1984) Arch. Biochem. Biophys. 232, 520-525] for the argininosuccinate lyase with the essential histidine residue close to the arginine-binding domain of delta-crystallin. L-Citrulline, after binding to this domain, might form an extra hydrogen bond with the essential histidine residue.

Full text

PDF
537

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbosa P., Cialkowski M., O'Brien W. E. Analysis of naturally occurring and site-directed mutations in the argininosuccinate lyase gene. J Biol Chem. 1991 Mar 15;266(8):5286–5290. [PubMed] [Google Scholar]
  2. Barbosa P., Wistow G. J., Cialkowski M., Piatigorsky J., O'Brien W. E. Expression of duck lens delta-crystallin cDNAs in yeast and bacterial hosts. Delta 2-crystallin is an active argininosuccinate lyase. J Biol Chem. 1991 Nov 25;266(33):22319–22322. [PubMed] [Google Scholar]
  3. Birdsall B., King R. W., Wheeler M. R., Lewis C. A., Jr, Goode S. R., Dunlap R. B., Roberts G. C. Correction for light absorption in fluorescence studies of protein-ligand interactions. Anal Biochem. 1983 Jul 15;132(2):353–361. doi: 10.1016/0003-2697(83)90020-9. [DOI] [PubMed] [Google Scholar]
  4. Carlson G. M. Precautions when determining kinetically the order of inactivation of enzymes by functionally irreversible inhibitors. Biochim Biophys Acta. 1984 Sep 25;789(3):347–350. doi: 10.1016/0167-4838(84)90191-2. [DOI] [PubMed] [Google Scholar]
  5. Chang G. G., Lee H. J. Monitoring protein conformational changes by quenching of intrinsic fluorescence. J Biochem Biophys Methods. 1984 Sep;9(4):351–355. doi: 10.1016/0165-022x(84)90019-8. [DOI] [PubMed] [Google Scholar]
  6. Eftink M. R., Ghiron C. A. Fluorescence quenching studies with proteins. Anal Biochem. 1981 Jul 1;114(2):199–227. doi: 10.1016/0003-2697(81)90474-7. [DOI] [PubMed] [Google Scholar]
  7. Garrard L. J., Bui Q. T., Nygaard R., Raushel F. M. Acid-base catalysis in the argininosuccinate lyase reaction. J Biol Chem. 1985 May 10;260(9):5548–5553. [PubMed] [Google Scholar]
  8. Gomi T., Fujioka M. Evidence for an essential histidine residue in S-adenosylhomocysteinase from rat liver. Biochemistry. 1983 Jan 4;22(1):137–143. doi: 10.1021/bi00270a020. [DOI] [PubMed] [Google Scholar]
  9. Holbrook J. J., Ingram V. A. Ionic properties of an essential histidine residue in pig heart lactate dehydrogenase. Biochem J. 1973 Apr;131(4):729–738. doi: 10.1042/bj1310729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kondoh H., Araki I., Yasuda K., Matsubasa T., Mori M. Expression of the chicken 'delta 2-crystallin' gene in mouse cells: evidence for encoding of argininosuccinate lyase. Gene. 1991 Mar 15;99(2):267–271. doi: 10.1016/0378-1119(91)90137-z. [DOI] [PubMed] [Google Scholar]
  11. LEVY H. M., LEBER P. D., RYAN E. M. INACTIVATION OF MYOSIN BY 2,4-DINITROPHENOL AND PROTECTION BY ADENOSINE TRIPHOSPHATE AND OTHER PHOSPHATE COMPOUNDS. J Biol Chem. 1963 Nov;238:3654–3659. [PubMed] [Google Scholar]
  12. Lee H. J., Chen Y. H., Chang G. G. Fluorescence studies on the dissociation and denaturation of pigeon liver malic enzyme. Biochim Biophys Acta. 1988 Jul 20;955(2):119–127. doi: 10.1016/0167-4838(88)90185-9. [DOI] [PubMed] [Google Scholar]
  13. Lee H. J., Chiou S. H., Chang G. G. Biochemical characterization and kinetic analysis of duck delta-crystallin with endogenous argininosuccinate lyase activity. Biochem J. 1992 Apr 15;283(Pt 2):597–603. doi: 10.1042/bj2830597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lehrer S. S., Leavis P. C. Solute quenching of protein fluorescence. Methods Enzymol. 1978;49:222–236. doi: 10.1016/s0076-6879(78)49012-3. [DOI] [PubMed] [Google Scholar]
  15. Lin C. W., Chiou S. H. Sequence analysis of pigeon delta-crystallin gene and its deduced primary structure. Comparison of avian delta-crystallins with and without endogenous argininosuccinate lyase activity. FEBS Lett. 1992 Oct 26;311(3):276–280. doi: 10.1016/0014-5793(92)81119-7. [DOI] [PubMed] [Google Scholar]
  16. Lusty C. J., Ratner S. Reaction of argininosuccinase with bromomesaconic acid: role of an essential lysine in the active site. Proc Natl Acad Sci U S A. 1987 May;84(10):3176–3180. doi: 10.1073/pnas.84.10.3176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MILDVAN A. S., LEIGH R. A. DETERNATION OF CO-FACTOR DISSOCIATION CONSTANTS FROM THE KINETICS OF INHIBITION OF ENZYMES. Biochim Biophys Acta. 1964 Sep 18;89:393–397. doi: 10.1016/0926-6569(64)90065-3. [DOI] [PubMed] [Google Scholar]
  18. Miles E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. doi: 10.1016/0076-6879(77)47043-5. [DOI] [PubMed] [Google Scholar]
  19. Nickerson J. M., Wawrousek E. F., Borras T., Hawkins J. W., Norman B. L., Filpula D. R., Nagle J. W., Ally A. H., Piatigorsky J. Sequence of the chicken delta 2 crystallin gene and its intergenic spacer. Extreme homology with the delta 1 crystallin gene. J Biol Chem. 1986 Jan 15;261(2):552–557. [PubMed] [Google Scholar]
  20. Piatigorsky J. Delta crystallins and their nucleic acids. Mol Cell Biochem. 1984;59(1-2):33–56. doi: 10.1007/BF00231304. [DOI] [PubMed] [Google Scholar]
  21. REGEN D. M., YOUNG D. A., DAVIS W. W., JACK J., Jr, PARK C. R. ADJUSTMENT OF GLYCOLYSIS TO ENERGY UTILIZATION IN THE PERFUSED RAT HEART. THE EFFECT OF CHANGES IN THE IONIC COMPOSITION OF THE MEDIUM ON PHOSPHOFRUCTOKINASE ACTIVITY. J Biol Chem. 1964 Feb;239:381–384. [PubMed] [Google Scholar]
  22. Raushel F. M. Nitro analogs of substrates for argininosuccinate synthetase and argininosuccinate lyase. Arch Biochem Biophys. 1984 Aug 1;232(2):520–525. doi: 10.1016/0003-9861(84)90569-1. [DOI] [PubMed] [Google Scholar]
  23. Renosto F., Seubert P. A., Knudson P., Segel I. H. Adenosine 5'-phosphosulfate kinase from Penicillium chrysogenum. Determining ligand dissociation constants of binary and ternary complexes from the kinetics of enzyme inactivation. J Biol Chem. 1985 Oct 5;260(22):11903–11913. [PubMed] [Google Scholar]
  24. Wistow G., Anderson A., Piatigorsky J. Evidence for neutral and selective processes in the recruitment of enzyme-crystallins in avian lenses. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6277–6280. doi: 10.1073/pnas.87.16.6277. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES