Abstract
Alanine disposal by liver parenchymal and haematopoietic cells from 21-day fetuses, newborns and adult rats was studied. Preparations selectively enriched in either haematopoietic cells or hepatocytes were obtained by direct perfusion of fetal- and neonatal-rat livers. L-Alanine transport into liver parenchymal cells was best fitted to two Na(+)-dependent saturable systems. The high-affinity system showed a much higher activity (Vmax.) in hepatocytes from fetuses and newborns than in those from adult rats (2.4, 4.3 and 0.3 nmol/8 min per 10(6) cells for fetuses, newborns and adults respectively). Vmax. for the low-affinity component was slightly lower during the perinatal period than in the adult (about 30 nmol/8 min per 10(6) cells for hepatocytes from fetuses and newborns, versus 48 nmol/8 min per 10(6) cells for adult rat parenchymal cells). Haematopoietic cells from fetal-rat livers showed significant Na(+)-dependent L-alanine uptake which was completely abolished after birth. These results show that the transport systems involved in L-alanine uptake by liver parenchymal cells are fully developed before birth. This probably contributes to fulfilling the high requirement for neutral amino acids for protein synthesis during development. Haematopoietic cells may play an important role in liver amino acid metabolism during fetal life.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEATON G. H., BEARE J., RYU M. H., McHENRY E. W. Protein metabolism in the pregnant rat. J Nutr. 1954 Oct 11;54(2):291–304. doi: 10.1093/jn/54.2.291. [DOI] [PubMed] [Google Scholar]
- Battaglia F. C. An update of fetal and placental metabolism: carbohydrate and amino acids. Biol Neonate. 1989;55(6):347–354. doi: 10.1159/000242938. [DOI] [PubMed] [Google Scholar]
- Battaglia F. C., Meschia G. Principal substrates of fetal metabolism. Physiol Rev. 1978 Apr;58(2):499–527. doi: 10.1152/physrev.1978.58.2.499. [DOI] [PubMed] [Google Scholar]
- Bellemann P. Amino acid transport and rubidium-ion uptake in monolayer cultures of hepatocytes from neonatal rats. Biochem J. 1981 Sep 15;198(3):475–483. doi: 10.1042/bj1980475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellemann P. Enhanced amino acid transport in cultured hepatocytes during liver development. J Biochem. 1981 Dec;90(6):1821–1824. doi: 10.1093/oxfordjournals.jbchem.a133661. [DOI] [PubMed] [Google Scholar]
- Blostein R., Grafova E. Characteristics of membrane transport losses during reticulocyte maturation. Biochem Cell Biol. 1987 Oct;65(10):869–875. doi: 10.1139/o87-113. [DOI] [PubMed] [Google Scholar]
- Blázquez E., Perez Castillo A., de Diego J. G. Characterization of glucagon receptors in liver membranes and isolated hepatocytes during rat ontogenic development. Mol Cell Endocrinol. 1987 Feb;49(2-3):149–157. doi: 10.1016/0303-7207(87)90208-5. [DOI] [PubMed] [Google Scholar]
- Brot-Laroche E., Serrano M. A., Delhomme B., Alvarado F. Temperature sensitivity and substrate specificity of two distinct Na+-activated D-glucose transport systems in guinea pig jejunal brush border membrane vesicles. J Biol Chem. 1986 May 15;261(14):6168–6176. [PubMed] [Google Scholar]
- Burgaya F., Llobera M., Ramírez I. Acid lipase activity in neonatal rat liver cell types. Effect of starvation. Biochim Biophys Acta. 1988 Dec 16;963(3):566–569. doi: 10.1016/0005-2760(88)90328-1. [DOI] [PubMed] [Google Scholar]
- Canivet B., Fehlmann M., Freychet P. Glucocorticoid and catecholamine stimulation of amino acid transport in rat hepatocytes. Synthesis of a high-affinity component. Mol Cell Endocrinol. 1980 Sep;19(3):253–261. doi: 10.1016/0303-7207(80)90055-6. [DOI] [PubMed] [Google Scholar]
- Christensen H. N. On the development of amino acid transport systems. Fed Proc. 1973 Jan;32(1):19–28. [PubMed] [Google Scholar]
- Emanuel J. R., Garetz S., Stone L., Levenson R. Differential expression of Na+,K+-ATPase alpha- and beta-subunit mRNAs in rat tissues and cell lines. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9030–9034. doi: 10.1073/pnas.84.24.9030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fafournoux P., Remesy C., Demigne C. Fluxes and membrane transport of amino acids in rat liver under different protein diets. Am J Physiol. 1990 Nov;259(5 Pt 1):E614–E625. doi: 10.1152/ajpendo.1990.259.5.E614. [DOI] [PubMed] [Google Scholar]
- Fafournoux P., Rémésy C., Demigné C. Control of alanine metabolism in rat liver by transport processes or cellular metabolism. Biochem J. 1983 Mar 15;210(3):645–652. doi: 10.1042/bj2100645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fafournoux P., Rémésy C., Demigné C. Stimulation of amino acid transport into liver cells from rats adapted to a high-protein diet. Biochem J. 1982 Jul 15;206(1):13–18. doi: 10.1042/bj2060013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fehlmann M., Le Cam A., Freychet P. Insulin and glucagon stimulation of amino acid transport in isolated rat hepatocytes. Synthesis of a high affinity component of transport. J Biol Chem. 1979 Oct 25;254(20):10431–10437. [PubMed] [Google Scholar]
- Fehlmann M., Le Cam A., Kitabgi P., Rey J. F., Freychet P. Regulation of amino acid transport in the liver. Emergence of a high affinity transport system in isolated hepatocytes from fasting rats. J Biol Chem. 1979 Jan 25;254(2):401–407. [PubMed] [Google Scholar]
- Felipe A., Remesar X., Pastor-Anglada M. Na+-dependent alanine transport in plasma membrane vesicles from late-pregnant rat livers. Pediatr Res. 1989 Nov;26(5):448–451. doi: 10.1203/00006450-198911000-00017. [DOI] [PubMed] [Google Scholar]
- Felipe A., Viñas O., Remesar X. Changes in alanine and glutamine transport during rat red blood cell maturation. Biosci Rep. 1992 Feb;12(1):47–56. doi: 10.1007/BF01125827. [DOI] [PubMed] [Google Scholar]
- Felipe A., Viñas O., Remesar X. Changes in glycine and leucine transport during red cell maturation in the rat. Biosci Rep. 1990 Apr;10(2):209–216. doi: 10.1007/BF01116580. [DOI] [PubMed] [Google Scholar]
- Fincham D. A., Willis J. S., Young J. D. Red cell amino acid transport. Evidence for the presence of system Gly in guinea pig reticulocytes. Biochim Biophys Acta. 1984 Oct 17;777(1):147–150. doi: 10.1016/0005-2736(84)90507-8. [DOI] [PubMed] [Google Scholar]
- Freinkel N., Metzger B. E., Nitzan M., Hare J. W., Shambaugh G. E., 3rd, Marshall R. T., Surmaczynska B. Z., Nagel T. C. "Accelerated starvation" and mechanisms for the conservation of maternal nitrogen during pregnancy. Isr J Med Sci. 1972 Mar;8(3):426–439. [PubMed] [Google Scholar]
- Goldspink D. F., Kelly F. J. Protein turnover and growth in the whole body, liver and kidney of the rat from the foetus to senility. Biochem J. 1984 Jan 15;217(2):507–516. doi: 10.1042/bj2170507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldspink D. F., Lewis S. E., Kelly F. J. Protein synthesis during the developmental growth of the small and large intestine of the rat. Biochem J. 1984 Jan 15;217(2):527–534. doi: 10.1042/bj2170527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Handlogten M. E., Kilberg M. S. Transport system a is not responsive to hormonal stimulation in primary cultures of fetal rat hepatocytes. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1113–1119. doi: 10.1016/0006-291x(82)92115-5. [DOI] [PubMed] [Google Scholar]
- Jones C. T., Rolph T. P. Metabolism during fetal life: a functional assessment of metabolic development. Physiol Rev. 1985 Apr;65(2):357–430. doi: 10.1152/physrev.1985.65.2.357. [DOI] [PubMed] [Google Scholar]
- Kilberg M. S. Amino acid transport in isolated rat hepatocytes. J Membr Biol. 1982;69(1):1–12. doi: 10.1007/BF01871236. [DOI] [PubMed] [Google Scholar]
- Kristensen L. O., Sestoft L., Folke M. Concentrative uptake of alanine in hepatocytes from fed and fasted rats. Am J Physiol. 1983 May;244(5):G491–G500. doi: 10.1152/ajpgi.1983.244.5.G491. [DOI] [PubMed] [Google Scholar]
- Le Cam A., Rey J. F., Fehlmann M., Kitabgi P., Freychet P. Amino acid transport in isolated hepatocytes after partial hepatectomy in the rat. Am J Physiol. 1979 Jun;236(6):E594–E602. doi: 10.1152/ajpendo.1979.236.6.E594. [DOI] [PubMed] [Google Scholar]
- Leoni S., Spagnuolo S., Dini L., Conti Devirgiliis L. Regulation of amino acid transport in isolated rat hepatocytes during development. J Cell Physiol. 1987 Jan;130(1):103–110. doi: 10.1002/jcp.1041300115. [DOI] [PubMed] [Google Scholar]
- Lewis S. E., Kelly F. J., Goldspink D. F. Pre- and post-natal growth and protein turnover in smooth muscle, heart and slow- and fast-twitch skeletal muscles of the rat. Biochem J. 1984 Jan 15;217(2):517–526. doi: 10.1042/bj2170517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meijer A. J., Lamers W. H., Chamuleau R. A. Nitrogen metabolism and ornithine cycle function. Physiol Rev. 1990 Jul;70(3):701–748. doi: 10.1152/physrev.1990.70.3.701. [DOI] [PubMed] [Google Scholar]
- Miller J. D., Sinha M. K., Sperling M. A., Ganguli S. Insulin stimulates amino acid and lipid metabolism in isolated fetal rat hepatocytes. Pediatr Res. 1986 Jul;20(7):609–612. doi: 10.1203/00006450-198607000-00006. [DOI] [PubMed] [Google Scholar]
- Moreno F., Pastor-Anglada M., Hollenberg M. D., Soley M. Effects of epidermal growth factor (urogastrone) on gluconeogenesis, glucose oxidation, and glycogen synthesis in isolated rat hepatocytes. Biochem Cell Biol. 1989 Oct;67(10):724–729. doi: 10.1139/o89-108. [DOI] [PubMed] [Google Scholar]
- Moule S. K., Bradford N. M., McGivan J. D. Short-term stimulation of Na+-dependent amino acid transport by dibutyryl cyclic AMP in hepatocytes. Characteristics and partial mechanism. Biochem J. 1987 Feb 1;241(3):737–743. doi: 10.1042/bj2410737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moule S. K., McGivan J. D. Epidermal growth factor, like glucagon, exerts a short-term stimulation of alanine transport in rat hepatocytes. Biochem J. 1987 Oct 1;247(1):233–235. doi: 10.1042/bj2470233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palou A., Arola L., Alemany M. Plasma amino acid concentrations in pregnant rats and in 21-day foetuses. Biochem J. 1977 Jul 15;166(1):49–55. doi: 10.1042/bj1660049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pastor-Anglada M., Remesar X., Bourdel G. Alanine uptake by liver at midpregnancy in rats. Am J Physiol. 1987 Mar;252(3 Pt 1):E408–E413. doi: 10.1152/ajpendo.1987.252.3.E408. [DOI] [PubMed] [Google Scholar]
- Samson M., Fehlmann M., Dolais-Kitabgi J., Freychet P. Amino acid transport in isolated hepatocytes from streptozotocin-diabetic rats. Diabetes. 1980 Dec;29(12):996–1000. doi: 10.2337/diab.29.12.996. [DOI] [PubMed] [Google Scholar]
- Snell K. Regulation of protein metabolism during postnatal development. Biochem Soc Trans. 1981 Oct;9(5):367–368. doi: 10.1042/bst0090367. [DOI] [PubMed] [Google Scholar]
- Tucker E. M., Young J. D. Biochemical changes during reticulocyte maturation in culture. A comparison of genetically different sheep erythrocytes. Biochem J. 1980 Oct 15;192(1):33–39. doi: 10.1042/bj1920033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vadgama J. V., Christensen H. N. Comparison of system N in fetal hepatocytes and in related cell lines. J Biol Chem. 1983 May 25;258(10):6422–6429. [PubMed] [Google Scholar]
- van Melle G., Robinson J. W. A systematic approach to the analysis of intestinal transport kinetics. J Physiol (Paris) 1981 May;77(9):1011–1016. [PubMed] [Google Scholar]
