Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Sep 1;294(Pt 2):387–390. doi: 10.1042/bj2940387

Molecular cloning and sequence analysis of the cDNA for ancrod, a thrombin-like enzyme from the venom of Calloselasma rhodostoma.

L C Au 1, S B Lin 1, J S Chou 1, G W Teh 1, K J Chang 1, C M Shih 1
PMCID: PMC1134466  PMID: 8373353

Abstract

The 1.54 kb cDNA for ancrod, a thrombin-like enzyme, was cloned from a lambda ZAP cDNA library derived from the venom glands of Calloselasma (Agkistrodon) rhodostoma. The cDNA sequence reveals that ancrod is synthesized as a pre-zymogen of 258 amino acids, including a putative secretory peptide of 18 amino acids and a proposed zymogen peptide of 6 amino-acid residues. The amino-acid sequence of the predicted active form of the enzyme exhibits a high degree of sequence similarity to those of mammalian serine proteases (trypsin and pancreatic kallikrein) and other thrombin-like enzymes (batroxobin and flavoxobin). Key amino-acid residues (His43, Asp88, Ser182 and Asp176) that are thought to be involved in the substrate cleavage and in the substrate-binding reaction are conserved. Ancrod contains 13 cysteine residues. Based on alignment with the amino-acid sequences of trypsin and batroxobin, six disulphide bridges can be predicted to be present in the ancrod protein. The existence of a free cysteine, which changes the common sequence surrounding the Ser182 active site from Gly-Asp-Ser-Gly-Gly-Pro to Cys-Asp-Ser-Gly-Gly-Pro, is unusual for a serine protease.

Full text

PDF
387

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Au L. C., Huang Y. B., Huang T. F., Teh G. W., Lin H. H., Choo K. B. A common precursor for a putative hemorrhagic protein and rhodostomin, a platelet aggregation inhibitor of the venom of Calloselasma rhodostoma: molecular cloning and sequence analysis. Biochem Biophys Res Commun. 1991 Dec 16;181(2):585–593. doi: 10.1016/0006-291x(91)91230-a. [DOI] [PubMed] [Google Scholar]
  2. Degen S. J., MacGillivray R. T., Davie E. W. Characterization of the complementary deoxyribonucleic acid and gene coding for human prothrombin. Biochemistry. 1983 Apr 26;22(9):2087–2097. doi: 10.1021/bi00278a008. [DOI] [PubMed] [Google Scholar]
  3. Esnouf M. P., Tunnah G. W. The isolation and properties of the thrombin-like activity from Ancistrodon rhodostoma venom. Br J Haematol. 1967 Jul;13(4):581–590. doi: 10.1111/j.1365-2141.1967.tb00765.x. [DOI] [PubMed] [Google Scholar]
  4. Ewart M. R., Hatton M. W., Basford J. M., Dodgson K. S. The proteolytic action of Arvin on human fibrinogen. Biochem J. 1970 Jul;118(4):603–609. doi: 10.1042/bj1180603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hatton M. W. Studies on the coagulant enzyme from Agkistrodon rhodostoma venom. Isolation and some properties of the enzyme. Biochem J. 1973 Apr;131(4):799–807. doi: 10.1042/bj1310799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huang T. F., Wu Y. J., Ouyang C. Characterization of a potent platelet aggregation inhibitor from Agkistrodon rhodostoma snake venom. Biochim Biophys Acta. 1987 Sep 11;925(3):248–257. doi: 10.1016/0304-4165(87)90189-9. [DOI] [PubMed] [Google Scholar]
  7. Itoh N., Tanaka N., Funakoshi I., Kawasaki T., Mihashi S., Yamashina I. Organization of the gene for batroxobin, a thrombin-like snake venom enzyme. Homology with the trypsin/kallikrein gene family. J Biol Chem. 1988 Jun 5;263(16):7628–7631. [PubMed] [Google Scholar]
  8. Itoh N., Tanaka N., Mihashi S., Yamashina I. Molecular cloning and sequence analysis of cDNA for batroxobin, a thrombin-like snake venom enzyme. J Biol Chem. 1987 Mar 5;262(7):3132–3135. [PubMed] [Google Scholar]
  9. Latallo Z. S. Retrospective study on complications and adverse effects of treatment with thrombin-like enzymes--a multicentre trial. Thromb Haemost. 1983 Aug 30;50(2):604–609. [PubMed] [Google Scholar]
  10. MacDonald R. J., Stary S. J., Swift G. H. Two similar but nonallelic rat pancreatic trypsinogens. Nucleotide sequences of the cloned cDNAs. J Biol Chem. 1982 Aug 25;257(16):9724–9732. [PubMed] [Google Scholar]
  11. Ouyang C. H., Yeh H. I., Huang T. F. Purification and characterization of a platelet aggregation inducer from Calloselasma rhodostoma (Malayan pit viper) snake venom. Toxicon. 1986;24(7):633–643. doi: 10.1016/0041-0101(86)90026-7. [DOI] [PubMed] [Google Scholar]
  12. Ouyang C., Hwang L. J., Huang T. F. alpha-Fibrinogenase from Agkistrodon rhodostoma (Malayan pit viper) snake venom. Toxicon. 1983;21(1):25–33. doi: 10.1016/0041-0101(83)90046-6. [DOI] [PubMed] [Google Scholar]
  13. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pirkle H., Theodor I., Lopez R. Catroxobin, a weakly thrombin-like enzyme from the venom of Crotalus atrox. NH2-terminal and active site amino acid sequences. Thromb Res. 1989 Oct 15;56(2):159–168. doi: 10.1016/0049-3848(89)90158-8. [DOI] [PubMed] [Google Scholar]
  15. Pizzo S. V., Schwartz M. L., Hill R. L., McKee P. A. The effect of plasmin on the subunit structure of human fibrinogen. J Biol Chem. 1972 Feb 10;247(3):636–645. [PubMed] [Google Scholar]
  16. Russel M., Kidd S., Kelley M. R. An improved filamentous helper phage for generating single-stranded plasmid DNA. Gene. 1986;45(3):333–338. doi: 10.1016/0378-1119(86)90032-6. [DOI] [PubMed] [Google Scholar]
  17. Shieh T. C., Kawabata S., Kihara H., Ohno M., Iwanaga S. Amino acid sequence of a coagulant enzyme, flavoxobin, from Trimeresurus flavoviridis venom. J Biochem. 1988 Apr;103(4):596–605. doi: 10.1093/oxfordjournals.jbchem.a122313. [DOI] [PubMed] [Google Scholar]
  18. Steiner D. F., Quinn P. S., Chan S. J., Marsh J., Tager H. S. Processing mechanisms in the biosynthesis of proteins. Ann N Y Acad Sci. 1980;343:1–16. doi: 10.1111/j.1749-6632.1980.tb47238.x. [DOI] [PubMed] [Google Scholar]
  19. Swift G. H., Dagorn J. C., Ashley P. L., Cummings S. W., MacDonald R. J. Rat pancreatic kallikrein mRNA: nucleotide sequence and amino acid sequence of the encoded preproenzyme. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7263–7267. doi: 10.1073/pnas.79.23.7263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Takio K., Towatari T., Katunuma N., Teller D. C., Titani K. Homology of amino acid sequences of rat liver cathepsins B and H with that of papain. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3666–3670. doi: 10.1073/pnas.80.12.3666. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES