Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Sep 1;294(Pt 2):487–490. doi: 10.1042/bj2940487

Expression of the calsequestrin gene in chicken cerebellum Purkinje neurons.

P Volpe 1, L Gorza 1, M Brini 1, R Sacchetto 1, S Ausoni 1, D O Clegg 1
PMCID: PMC1134480  PMID: 8373363

Abstract

Intracellular rapidly exchanging Ca2+ stores are identified and defined in terms of intralumenal low-affinity, high-capacity Ca(2+)-binding proteins, of which calsequestrin (CS) is the prototype in striated muscles. In chicken striated muscles, there is a single gene for CS [Choi and Clegg (1990) Dev. Biol. 142, 169-177]. In the chicken brain, the gene for CS was found to be selectively expressed in Purkinje neurons, as judged by Northern blotting, in situ hybridization and immunocytochemistry. The synthetic machinery for CS was found to be restricted to the cell body, i.e. excluded from dendrites and axon.

Full text

PDF
487

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruckenstein D. A., Lein P. J., Higgins D., Fremeau R. T., Jr Distinct spatial localization of specific mRNAs in cultured sympathetic neurons. Neuron. 1990 Dec;5(6):809–819. doi: 10.1016/0896-6273(90)90340-l. [DOI] [PubMed] [Google Scholar]
  2. Choi E. S., Clegg D. O. Identification and developmental expression of a chicken calsequestrin homolog. Dev Biol. 1990 Nov;142(1):169–177. doi: 10.1016/0012-1606(90)90160-k. [DOI] [PubMed] [Google Scholar]
  3. Clegg D. O., Helder J. C., Hann B. C., Hall D. E., Reichardt L. F. Amino acid sequence and distribution of mRNA encoding a major skeletal muscle laminin binding protein: an extracellular matrix-associated protein with an unusual COOH-terminal polyaspartate domain. J Cell Biol. 1988 Aug;107(2):699–705. doi: 10.1083/jcb.107.2.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  5. Fliegel L., Burns K., MacLennan D. H., Reithmeier R. A., Michalak M. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1989 Dec 25;264(36):21522–21528. [PubMed] [Google Scholar]
  6. Fliegel L., Ohnishi M., Carpenter M. R., Khanna V. K., Reithmeier R. A., MacLennan D. H. Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1167–1171. doi: 10.1073/pnas.84.5.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gorza L., Ausoni S., Merciai N., Hastings K. E., Schiaffino S. Regional differences in troponin I isoform switching during rat heart development. Dev Biol. 1993 Mar;156(1):253–264. doi: 10.1006/dbio.1993.1074. [DOI] [PubMed] [Google Scholar]
  8. Gorza L., Schiaffino S., Volpe P. Inositol 1,4,5-trisphosphate receptor in heart: evidence for its concentration in Purkinje myocytes of the conduction system. J Cell Biol. 1993 Apr;121(2):345–353. doi: 10.1083/jcb.121.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jorgensen A. O., Campbell K. P. Evidence for the presence of calsequestrin in two structurally different regions of myocardial sarcoplasmic reticulum. J Cell Biol. 1984 Apr;98(4):1597–1602. doi: 10.1083/jcb.98.4.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jorgensen A. O., Shen A. C., Campbell K. P., MacLennan D. H. Ultrastructural localization of calsequestrin in rat skeletal muscle by immunoferritin labeling of ultrathin frozen sections. J Cell Biol. 1983 Nov;97(5 Pt 1):1573–1581. doi: 10.1083/jcb.97.5.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kleiman R., Banker G., Steward O. Differential subcellular localization of particular mRNAs in hippocampal neurons in culture. Neuron. 1990 Dec;5(6):821–830. doi: 10.1016/0896-6273(90)90341-c. [DOI] [PubMed] [Google Scholar]
  12. Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  13. Lindsey J. D., Ellisman M. H. The neuronal endomembrane system. III. The origins of the axoplasmic reticulum and discrete axonal cisternae at the axon hillock. J Neurosci. 1985 Dec;5(12):3135–3144. doi: 10.1523/JNEUROSCI.05-12-03135.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meldolesi J., Villa A., Volpe P., Pozzan T. Cellular sites of IP3 action. Adv Second Messenger Phosphoprotein Res. 1992;26:187–208. [PubMed] [Google Scholar]
  15. Michalak M., Milner R. E., Burns K., Opas M. Calreticulin. Biochem J. 1992 Aug 1;285(Pt 3):681–692. doi: 10.1042/bj2850681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Milner R. E., Baksh S., Shemanko C., Carpenter M. R., Smillie L., Vance J. E., Opas M., Michalak M. Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem. 1991 Apr 15;266(11):7155–7165. [PubMed] [Google Scholar]
  17. Nakagawa T., Shiota C., Okano H., Mikoshiba K. Differential localization of alternative spliced transcripts encoding inositol 1,4,5-trisphosphate receptors in mouse cerebellum and hippocampus: in situ hybridization study. J Neurochem. 1991 Nov;57(5):1807–1810. doi: 10.1111/j.1471-4159.1991.tb06385.x. [DOI] [PubMed] [Google Scholar]
  18. Scott B. T., Simmerman H. K., Collins J. H., Nadal-Ginard B., Jones L. R. Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J Biol Chem. 1988 Jun 25;263(18):8958–8964. [PubMed] [Google Scholar]
  19. Singer R. H. The cytoskeleton and mRNA localization. Curr Opin Cell Biol. 1992 Feb;4(1):15–19. doi: 10.1016/0955-0674(92)90053-f. [DOI] [PubMed] [Google Scholar]
  20. Takei K., Stukenbrok H., Metcalf A., Mignery G. A., Südhof T. C., Volpe P., De Camilli P. Ca2+ stores in Purkinje neurons: endoplasmic reticulum subcompartments demonstrated by the heterogeneous distribution of the InsP3 receptor, Ca(2+)-ATPase, and calsequestrin. J Neurosci. 1992 Feb;12(2):489–505. doi: 10.1523/JNEUROSCI.12-02-00489.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thomas K., Navarro J., Benson R. J., Campbell K. P., Rotundo R. L., Fine R. E. Newly synthesized calsequestrin, destined for the sarcoplasmic reticulum, is contained in early/intermediate Golgi-derived clathrin-coated vesicles. J Biol Chem. 1989 Feb 25;264(6):3140–3145. [PubMed] [Google Scholar]
  22. Treves S., Zorzato F., Pozzan T. Identification of calreticulin isoforms in the central nervous system. Biochem J. 1992 Oct 15;287(Pt 2):579–581. doi: 10.1042/bj2870579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ullrich A., Shine J., Chirgwin J., Pictet R., Tischer E., Rutter W. J., Goodman H. M. Rat insulin genes: construction of plasmids containing the coding sequences. Science. 1977 Jun 17;196(4296):1313–1319. doi: 10.1126/science.325648. [DOI] [PubMed] [Google Scholar]
  24. Verma A., Ross C. A., Verma D., Supattapone S., Snyder S. H. Rat brain endoplasmic reticulum calcium pools are anatomically and functionally segregated. Cell Regul. 1990 Sep;1(10):781–790. doi: 10.1091/mbc.1.10.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Villa A., Podini P., Clegg D. O., Pozzan T., Meldolesi J. Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip. J Cell Biol. 1991 May;113(4):779–791. doi: 10.1083/jcb.113.4.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Volpe P., Alderson-Lang B. H., Madeddu L., Damiani E., Collins J. H., Margreth A. Calsequestrin, a component of the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of chicken cerebellum. Neuron. 1990 Nov;5(5):713–721. doi: 10.1016/0896-6273(90)90225-5. [DOI] [PubMed] [Google Scholar]
  27. Volpe P., Furlan S., Damiani E. Purification and characterization of calsequestrin from chicken cerebellum. Biochem Biophys Res Commun. 1991 Nov 27;181(1):28–35. doi: 10.1016/s0006-291x(05)81377-4. [DOI] [PubMed] [Google Scholar]
  28. Volpe P., Villa A., Damiani E., Sharp A. H., Podini P., Snyder S. H., Meldolesi J. Heterogeneity of microsomal Ca2+ stores in chicken Purkinje neurons. EMBO J. 1991 Nov;10(11):3183–3189. doi: 10.1002/j.1460-2075.1991.tb04880.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wuytack F., Raeymaekers L., Verbist J., Jones L. R., Casteels R. Smooth-muscle endoplasmic reticulum contains a cardiac-like form of calsequestrin. Biochim Biophys Acta. 1987 May 29;899(2):151–158. doi: 10.1016/0005-2736(87)90395-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES