Abstract
The autophosphorylated regulatory subunit (32P-RII) of cyclic-AMP-dependent protein kinase II was efficiently dephosphorylated by its C subunit in the absence of added ADP, provided that Mg/ATP and a standard protein kinase peptide substrate were present. This raises the possibility that autodephosphorylation could be significant in the intact cell. Only the cyclic-AMP-complexed free form of 32P-RII was efficiently dephosphorylated, indicating that the autodephosphorylation was intermolecular. Autodephosphorylation of 32P-RII in the presence of MgATP and kemptide occurred with formation of [gamma-32P]ATP, suggesting transfer of 32P of phospho-RII to a transient C*(MgADP) complex formed during the forward kinase reaction with peptide as substrate. Autodephosphorylation promoted by phosphorylation of exogenous substrates could operate also for other kinases conforming to a mechanism where MgADP remains bound to the active site after the other product (phosphorylated substrate) has left the catalytic complex.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aszódi A., Müller U., Friedrich P., Spatz H. C. Signal convergence on protein kinase A as a molecular correlate of learning. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5832–5836. doi: 10.1073/pnas.88.13.5832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bollen M., Stalmans W. The structure, role, and regulation of type 1 protein phosphatases. Crit Rev Biochem Mol Biol. 1992;27(3):227–281. doi: 10.3109/10409239209082564. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Buxbaum J. D., Dudai Y. A quantitative model for the kinetics of cAMP-dependent protein kinase (type II) activity. Long-term activation of the kinase and its possible relevance to learning and memory. J Biol Chem. 1989 Jun 5;264(16):9344–9351. [PubMed] [Google Scholar]
- Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
- Døskeland A. P., Schworer C. M., Døskeland S. O., Chrisman T. D., Soderling T. R., Corbin J. D., Flatmark T. Some aspects of the phosphorylation of phenylalanine 4-monooxygenase by a calcium-dependent and calmodulin-dependent protein kinase. Eur J Biochem. 1984 Nov 15;145(1):31–37. doi: 10.1111/j.1432-1033.1984.tb08518.x. [DOI] [PubMed] [Google Scholar]
- Døskeland A. P., Vintermyr O. K., Flatmark T., Cotton R. G., Døskeland S. O. Phenylalanine positively modulates the cAMP-dependent phosphorylation and negatively modulates the vasopressin-induced and okadaic-acid-induced phosphorylation of phenylalanine 4-monooxygenase in intact rat hepatocytes. Eur J Biochem. 1992 May 15;206(1):161–170. doi: 10.1111/j.1432-1033.1992.tb16913.x. [DOI] [PubMed] [Google Scholar]
- Døskeland S. O., Vintermyr O. K., Corbin J. D., Ogreid D. Studies on the interactions between the cyclic nucleotide-binding sites of cGMP-dependent protein kinase. J Biol Chem. 1987 Mar 15;262(8):3534–3540. [PubMed] [Google Scholar]
- Edelman A. M., Blumenthal D. K., Krebs E. G. Protein serine/threonine kinases. Annu Rev Biochem. 1987;56:567–613. doi: 10.1146/annurev.bi.56.070187.003031. [DOI] [PubMed] [Google Scholar]
- Ekanger R., Vintermyr O. K., Houge G., Sand T. E., Scott J. D., Krebs E. G., Eikhom T. S., Christoffersen T., Ogreid D., Døskeland S. O. The expression of cAMP-dependent protein kinase subunits is differentially regulated during liver regeneration. J Biol Chem. 1989 Mar 15;264(8):4374–4382. [PubMed] [Google Scholar]
- Geuss U., Mayr G. W., Heilmeyer L. M., Jr Steady-state kinetics of skeletal muscle myosin light chain kinase indicate a strong down regulation by products. Eur J Biochem. 1985 Dec 2;153(2):327–334. doi: 10.1111/j.1432-1033.1985.tb09305.x. [DOI] [PubMed] [Google Scholar]
- Granot J., Mildvan A. S., Hiyama K., Kondo H., Kaiser E. T. Magnetic resonance studies of the effect of the regulatory subunit on metal and substrate binding to the catalytic subunit of bovine heart protein kinase. J Biol Chem. 1980 May 25;255(10):4569–4573. [PubMed] [Google Scholar]
- Hanson P. I., Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem. 1992;61:559–601. doi: 10.1146/annurev.bi.61.070192.003015. [DOI] [PubMed] [Google Scholar]
- Hidaka H., Kobayashi R. Pharmacology of protein kinase inhibitors. Annu Rev Pharmacol Toxicol. 1992;32:377–397. doi: 10.1146/annurev.pa.32.040192.002113. [DOI] [PubMed] [Google Scholar]
- Hofmann F., Bechtel P. J., Krebs E. G. Concentrations of cyclic AMP-dependent protein kinase subunits in various tissues. J Biol Chem. 1977 Feb 25;252(4):1441–1447. [PubMed] [Google Scholar]
- Katoh T., Fujisawa H. Autoactivation of calmodulin-dependent protein kinase II by autophosphorylation. J Biol Chem. 1991 Feb 15;266(5):3039–3044. [PubMed] [Google Scholar]
- Katoh T., Fujisawa H. Calmodulin-dependent protein kinase II. Kinetic studies on the interaction with substrates and calmodulin. Biochim Biophys Acta. 1991 Jan 31;1091(2):205–212. doi: 10.1016/0167-4889(91)90063-4. [DOI] [PubMed] [Google Scholar]
- Kong C. T., Cook P. F. Isotope partitioning in the adenosine 3',5'-monophosphate dependent protein kinase reaction indicates a steady-state random kinetic mechanism. Biochemistry. 1988 Jun 28;27(13):4795–4799. doi: 10.1021/bi00413a032. [DOI] [PubMed] [Google Scholar]
- Kwiatkowski A. P., Huang C. Y., King M. M. Kinetic mechanism of the type II calmodulin-dependent protein kinase: studies of the forward and reverse reactions and observation of apparent rapid-equilibrium ordered binding. Biochemistry. 1990 Jan 9;29(1):153–159. doi: 10.1021/bi00453a019. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- McKnight G. S. Cyclic AMP second messenger systems. Curr Opin Cell Biol. 1991 Apr;3(2):213–217. doi: 10.1016/0955-0674(91)90141-k. [DOI] [PubMed] [Google Scholar]
- Ogreid D., Døskeland S. O. Protein kinase II has two distinct binding sites for cyclic AMP, only one of which is detectable by the conventional membrane-filtration method. FEBS Lett. 1980 Dec 1;121(2):340–344. doi: 10.1016/0014-5793(80)80376-0. [DOI] [PubMed] [Google Scholar]
- Qamar R., Yoon M. Y., Cook P. F. Kinetic mechanism of the adenosine 3',5'-monophosphate dependent protein kinase catalytic subunit in the direction of magnesium adenosine 5'-diphosphate phosphorylation. Biochemistry. 1992 Oct 20;31(41):9986–9992. doi: 10.1021/bi00156a018. [DOI] [PubMed] [Google Scholar]
- Rangel-Aldao R., Rosen O. M. Mechanism of self-phosphorylation of adenosine 3':5'-monophosphate-dependent protein kinase from bovine cardiac muscle. J Biol Chem. 1976 Dec 10;251(23):7526–7529. [PubMed] [Google Scholar]
- Rosen O. M., Erlichman J. Reversible autophosphorylation of a cyclic 3':5'-AMP-dependent protein kinase from bovine cardiac muscle. J Biol Chem. 1975 Oct 10;250(19):7788–7794. [PubMed] [Google Scholar]
- Schwartz J. H., Greenberg S. M. Molecular mechanisms for memory: second-messenger induced modifications of protein kinases in nerve cells. Annu Rev Neurosci. 1987;10:459–476. doi: 10.1146/annurev.ne.10.030187.002331. [DOI] [PubMed] [Google Scholar]
- Scott C. W., Mumby M. C. Autophosphorylation of rat liver type II cAMP-dependent protein kinase. Mol Endocrinol. 1989 Nov;3(11):1815–1822. doi: 10.1210/mend-3-11-1815. [DOI] [PubMed] [Google Scholar]
- Scott J. D., Glaccum M. B., Fischer E. H., Krebs E. G. Primary-structure requirements for inhibition by the heat-stable inhibitor of the cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1613–1616. doi: 10.1073/pnas.83.6.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shizuta Y., Beavo J. A., Bechtel P. J., Hofmann F., Krebs E. G. Reversibility of adenosine 3':5'-monophosphate-dependent protein kinase reactions. J Biol Chem. 1975 Sep 10;250(17):6891–6896. [PubMed] [Google Scholar]
- Sugden P. H., Holladay L. A., Reimann E. M., Corbin J. D. Purification and characterization of the catalytic subunit of adenosine 3':5'-cyclic monophosphate-dependent protein kinase from bovine liver. Biochem J. 1976 Nov;159(2):409–422. doi: 10.1042/bj1590409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor S. S., Buechler J. A., Yonemoto W. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem. 1990;59:971–1005. doi: 10.1146/annurev.bi.59.070190.004543. [DOI] [PubMed] [Google Scholar]
- Whitehouse S., Feramisco J. R., Casnellie J. E., Krebs E. G., Walsh D. A. Studies on the kinetic mechanism of the catalytic subunit of the cAMP-dependent protein kinase. J Biol Chem. 1983 Mar 25;258(6):3693–3701. [PubMed] [Google Scholar]

