Abstract
As the initial step in the use of fibroblasts as a model system for 'in situ kinetics', ascorbic acid (vitamin C) accumulation in normal human fibroblasts was investigated for the first time. Ascorbic acid was transported into fibroblasts and accumulated against a concentration gradient up to 20-fold, as measured by h.p.l.c. with coulometric electrochemical detection. Ascorbic acid accumulation was mediated by two concentration-dependent transport activities. The first was a high-affinity activity with an apparent Km of 6 microM and an apparent Vmax. of 203 microM/h, and the second was a low-affinity activity with an apparent Km of 5 mM and an apparent Vmax. of 1.8 mM/h. Both activities were inhibited by metabolic inhibitors and inhibitors of ascorbic acid transport in human neutrophils. The low-affinity transporter could not be accounted for by diffusion. Although the high-affinity transport activity was comparable with that described for human neutrophils, the low-affinity transporter was different. These data provide the first evidence that two-component ascorbic acid transport may be a generalized mechanism for accumulation of this vitamin in humans.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berg R. A., Prockop D. J. Affinity column purification of protocollagen proline hydroxylase from chick embryos and further characterization of the enzyme. J Biol Chem. 1973 Feb 25;248(4):1175–1182. [PubMed] [Google Scholar]
- Bergsten P., Amitai G., Kehrl J., Dhariwal K. R., Klein H. G., Levine M. Millimolar concentrations of ascorbic acid in purified human mononuclear leukocytes. Depletion and reaccumulation. J Biol Chem. 1990 Feb 15;265(5):2584–2587. [PubMed] [Google Scholar]
- Blanck T. J., Peterkofsky B. The stimulation of collagen secretion by ascorbate as a result of increased proline hydroxylation in chick embryo fibroblasts. Arch Biochem Biophys. 1975 Nov;171(1):259–267. doi: 10.1016/0003-9861(75)90031-4. [DOI] [PubMed] [Google Scholar]
- Chen S. R., Lo T. C. Cytochalasin B as a probe for the two hexose-transport systems in rat L6 myoblasts. Biochem J. 1988 Apr 1;251(1):63–72. doi: 10.1042/bj2510063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Amore T., Lo T. C. Hexose transport in L6 rat myoblasts. I. Rate-limiting step, kinetic properties, and evidence for two systems. J Cell Physiol. 1986 Apr;127(1):95–105. doi: 10.1002/jcp.1041270113. [DOI] [PubMed] [Google Scholar]
- Dhariwal K. R., Shirvan M., Levine M. Ascorbic acid regeneration in chromaffin granules. In situ kinetics. J Biol Chem. 1991 Mar 25;266(9):5384–5387. [PubMed] [Google Scholar]
- Dhariwal K. R., Washko P., Hartzell W. O., Levine M. Ascorbic acid within chromaffin granules. In situ kinetics of norepinephrine biosynthesis. J Biol Chem. 1989 Sep 15;264(26):15404–15409. [PubMed] [Google Scholar]
- Diliberto E. J., Jr, Heckman G. D., Daniels A. J. Characterization of ascorbic acid transport by adrenomedullary chromaffin cells. Evidence for Na+-dependent co-transport. J Biol Chem. 1983 Nov 10;258(21):12886–12894. [PubMed] [Google Scholar]
- EDWARDS L. C., DUNPHY J. E. Wound healing. II. Injury and abnormal repair. N Engl J Med. 1958 Aug 7;259(6):275–285. doi: 10.1056/NEJM195808072590605. [DOI] [PubMed] [Google Scholar]
- Heytler P. G. Uncouplers of oxidative phosphorylation. Methods Enzymol. 1979;55:462–442. doi: 10.1016/0076-6879(79)55060-5. [DOI] [PubMed] [Google Scholar]
- Kletzien R. F., Perdue J. F., Springer A. Cytochalasin A and B. Inhibition of sugar uptake in cultured cells. J Biol Chem. 1972 May 10;247(9):2964–2966. [PubMed] [Google Scholar]
- Kono T. Insulin-sensitive glucose transport. Vitam Horm. 1988;44:103–154. doi: 10.1016/s0083-6729(08)60694-9. [DOI] [PubMed] [Google Scholar]
- Levine M. Ascorbic acid specifically enhances dopamine beta-monooxygenase activity in resting and stimulated chromaffin cells. J Biol Chem. 1986 Jun 5;261(16):7347–7356. [PubMed] [Google Scholar]
- Levine M. New concepts in the biology and biochemistry of ascorbic acid. N Engl J Med. 1986 Apr 3;314(14):892–902. doi: 10.1056/NEJM198604033141407. [DOI] [PubMed] [Google Scholar]
- Levine M. Vitamin C: turning over a new leaf. Nutrition. 1989 Nov-Dec;5(6):428–428. [PubMed] [Google Scholar]
- PETERKOFSKY B., UDENFRIEND S. ENZYMATIC HYDROXYLATION OF PROLINE IN MICROSOMAL POLYPEPTIDE LEADING TO FORMATION OF COLLAGEN. Proc Natl Acad Sci U S A. 1965 Feb;53:335–342. doi: 10.1073/pnas.53.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Padh H., Aleo J. J. Characterization of the ascorbic acid transport by 3T6 fibroblasts. Biochim Biophys Acta. 1987 Jul 23;901(2):283–290. doi: 10.1016/0005-2736(87)90125-8. [DOI] [PubMed] [Google Scholar]
- Rhoads R. E., Udenfriend S. Decarboxylation of alpha-ketoglutarate coupled to collagen proline hydroxylase. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1473–1478. doi: 10.1073/pnas.60.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Risteli J., Tryggvason K., Kivirikko K. I. Prolyl 3-hydroxylase: partial characterization of the enzyme from rat kidney cortex. Eur J Biochem. 1977 Mar 1;73(2):485–492. doi: 10.1111/j.1432-1033.1977.tb11341.x. [DOI] [PubMed] [Google Scholar]
- SLATER E. C. The components of the dihydrocozymase oxidase system. Biochem J. 1950 Apr;46(4):484–499. doi: 10.1042/bj0460484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- VAN ROBERTSON W. B., SCHWARTZ B. Ascorbic acid and the formation of collagen. J Biol Chem. 1953 Apr;201(2):689–696. [PubMed] [Google Scholar]
- Washko P. W., Hartzell W. O., Levine M. Ascorbic acid analysis using high-performance liquid chromatography with coulometric electrochemical detection. Anal Biochem. 1989 Sep;181(2):276–282. doi: 10.1016/0003-2697(89)90243-1. [DOI] [PubMed] [Google Scholar]
- Washko P., Levine M. Inhibition of ascorbic acid transport in human neutrophils by glucose. J Biol Chem. 1992 Nov 25;267(33):23568–23574. [PubMed] [Google Scholar]
- Washko P., Rotrosen D., Levine M. Ascorbic acid transport and accumulation in human neutrophils. J Biol Chem. 1989 Nov 15;264(32):18996–19002. [PubMed] [Google Scholar]
