Abstract
Membrane vesicles were isolated from the basolateral domains of pig and normal human colonocytes. The activity of the ouabain-sensitive K(+)-activated phosphatase, the basolateral membrane marker, was enriched 13-fold in these membrane vesicles over the original homogenate. The membranes displayed cross-reactions with antibodies to the (Na+/K+)ATPase and the RLA class I major histocompatibility antigen, both known indicators of the basolateral membrane. There was negligible contamination by other organelles and the luminal membrane, as revealed by marker-enzyme analysis and Western blotting, using an antibody to villin. The vesicles transported D-glucose in a cytochalasin B-inhibitable Na(+)-independent manner, with a Km of 28.1 +/- 0.8 mM and Vmax. of 3.1 +/- 0.4 nmol/s per mg of protein. The transport was inhibited by 2-deoxy-D-glucose and 3-O-methyl-D-glucose, but not by L-glucose or methyl-alpha-D-glucose. Probing the colonocyte basolateral membranes with an antibody against the C-terminus of the human liver GLUT 2 produced a cross-reaction at 52 kDa. These properties indicate the presence of a GLUT 2 isoform on the basolateral membranes of human and pig colonocytes.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahnen D. J., Santiago N. A., Cezard J. P., Gray G. M. Intestinal aminooligopeptidase. In vivo synthesis on intracellular membranes of rat jejunum. J Biol Chem. 1982 Oct 25;257(20):12129–12135. [PubMed] [Google Scholar]
- Axelrod J. D., Pilch P. F. Unique cytochalasin B binding characteristics of the hepatic glucose carrier. Biochemistry. 1983 Apr 26;22(9):2222–2227. doi: 10.1021/bi00278a025. [DOI] [PubMed] [Google Scholar]
- Baly D. L., Horuk R. The biology and biochemistry of the glucose transporter. Biochim Biophys Acta. 1988 Oct 11;947(3):571–590. doi: 10.1016/0304-4157(88)90008-1. [DOI] [PubMed] [Google Scholar]
- Biber J., Rechkemmer G., Bodmer M., Schröder P., Haase W., Murer H. Isolation of basolateral membranes from columnar cells of the proximal colon of the guinea pig. Biochim Biophys Acta. 1983 Oct 26;735(1):1–11. doi: 10.1016/0005-2736(83)90255-9. [DOI] [PubMed] [Google Scholar]
- Bourne A., Barnes K., Taylor B. A., Turner A. J., Kenny A. J. Membrane peptidases in the pig choroid plexus and on other cell surfaces in contact with the cerebrospinal fluid. Biochem J. 1989 Apr 1;259(1):69–80. doi: 10.1042/bj2590069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brasitus T. A., Keresztes R. S. Isolation and partial characterization of basolateral membranes from rat proximal colonic epithelial cells. Biochim Biophys Acta. 1983 Feb 9;728(1):11–19. doi: 10.1016/0005-2736(83)90431-5. [DOI] [PubMed] [Google Scholar]
- Buddington R. K., Diamond J. M. Ontogenetic development of intestinal nutrient transporters. Annu Rev Physiol. 1989;51:601–619. doi: 10.1146/annurev.ph.51.030189.003125. [DOI] [PubMed] [Google Scholar]
- Colas B., Maroux S. Simultaneous isolation of brush border and basolateral membrane from rabbit enterocytes. Presence of brush border hydrolases in the basolateral membrane of rabbit enterocytes. Biochim Biophys Acta. 1980 Aug 4;600(2):406–420. doi: 10.1016/0005-2736(80)90444-7. [DOI] [PubMed] [Google Scholar]
- Craik J. D., Elliott K. R. Kinetics of 3-O-methyl-D-glucose transport in isolated rat hepatocytes. Biochem J. 1979 Aug 15;182(2):503–508. doi: 10.1042/bj1820503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dyer J., Beechey R. B., Gorvel J. P., Smith R. T., Wootton R., Shirazi-Beechey S. P. Glycyl-L-proline transport in rabbit enterocyte basolateral-membrane vesicles. Biochem J. 1990 Aug 1;269(3):565–571. doi: 10.1042/bj2690565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flier J. S., Mueckler M. M., Usher P., Lodish H. F. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science. 1987 Mar 20;235(4795):1492–1495. doi: 10.1126/science.3103217. [DOI] [PubMed] [Google Scholar]
- Helander H. F. Enzyme patterns and protein absorption in rat colon during development. Acta Anat (Basel) 1975;91(3):330–349. doi: 10.1159/000144395. [DOI] [PubMed] [Google Scholar]
- Jung C. Y., Rampal A. L. Cytochalasin B binding sites and glucose transport carrier in human erythrocyte ghosts. J Biol Chem. 1977 Aug 10;252(15):5456–5463. [PubMed] [Google Scholar]
- Kasanicki M. A., Pilch P. F. Regulation of glucose-transporter function. Diabetes Care. 1990 Mar;13(3):219–227. doi: 10.2337/diacare.13.3.219. [DOI] [PubMed] [Google Scholar]
- Kaye G. I., Fenoglio C. M., Pascal R. R., Lane N. Comparative electron microscopic features of normal, hyperplastic, and adenomatous human colonic epithelium. Variations in cellular structure relative to the process of epithelial differentiation. Gastroenterology. 1973 May;64(5):926–945. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lash L. H., Jones D. P. Renal glutathione transport. Characteristics of the sodium-dependent system in the basal-lateral membrane. J Biol Chem. 1984 Dec 10;259(23):14508–14514. [PubMed] [Google Scholar]
- Massey D., Feracci H., Gorvel J. P., Rigal A., Soulié J. M., Maroux S. Evidence for the transit of aminopeptidase N through the basolateral membrane before it reaches the brush border of enterocytes. J Membr Biol. 1987;96(1):19–25. doi: 10.1007/BF01869331. [DOI] [PubMed] [Google Scholar]
- Moktari S., Feracci H., Gorvel J. P., Mishal Z., Rigal A., Maroux S. Subcellular fractionation and subcellular localization of aminopeptidase N in the rabbit enterocytes. J Membr Biol. 1986;89(1):53–63. doi: 10.1007/BF01870895. [DOI] [PubMed] [Google Scholar]
- Moktari S., Feracci H., Gorvel J. P., Mishal Z., Rigal A., Maroux S. Subcellular fractionation and subcellular localization of aminopeptidase N in the rabbit enterocytes. J Membr Biol. 1986;89(1):53–63. doi: 10.1007/BF01870895. [DOI] [PubMed] [Google Scholar]
- Mullins J. G., Beechey R. B., Gould G. W., Campbell F. C., Shirazi-Beechey S. P. Characterization of the ileal Na+/bile salt co-transporter in brush border membrane vesicles and functional expression in Xenopus laevis oocytes. Biochem J. 1992 Aug 1;285(Pt 3):785–790. doi: 10.1042/bj2850785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PENNINGTON R. J. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem J. 1961 Sep;80:649–654. doi: 10.1042/bj0800649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters T. J. Analytical subcellular fractionation of jejunal biopsy specimens: methodology and characterization of the organelles in normal tissue. Clin Sci Mol Med. 1976 Dec;51(6):557–574. doi: 10.1042/cs0510557. [DOI] [PubMed] [Google Scholar]
- Robine S., Huet C., Moll R., Sahuquillo-Merino C., Coudrier E., Zweibaum A., Louvard D. Can villin be used to identify malignant and undifferentiated normal digestive epithelial cells? Proc Natl Acad Sci U S A. 1985 Dec;82(24):8488–8492. doi: 10.1073/pnas.82.24.8488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salter D. W., Weber M. J. Glucose-specific cytochalasin B binding is increased in chicken embryo fibroblasts transformed by Rous sarcoma virus. J Biol Chem. 1979 May 10;254(9):3554–3561. [PubMed] [Google Scholar]
- Shirazi-Beechey S. P., Davies A. G., Tebbutt K., Dyer J., Ellis A., Taylor C. J., Fairclough P., Beechey R. B. Preparation and properties of brush-border membrane vesicles from human small intestine. Gastroenterology. 1990 Mar;98(3):676–685. doi: 10.1016/0016-5085(90)90288-c. [DOI] [PubMed] [Google Scholar]
- Shirazi-Beechey S. P., Gorvel J. P., Beechey R. B. Phosphate transport in intestinal brush-border membrane. J Bioenerg Biomembr. 1988 Apr;20(2):273–288. doi: 10.1007/BF00768399. [DOI] [PubMed] [Google Scholar]
- Shirazi-Beechey S. P., Hirayama B. A., Wang Y., Scott D., Smith M. W., Wright E. M. Ontogenic development of lamb intestinal sodium-glucose co-transporter is regulated by diet. J Physiol. 1991 Jun;437:699–708. doi: 10.1113/jphysiol.1991.sp018620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirazi S. P., Beechey R. B., Butterworth P. J. The use of potent inhibitors of alkaline phosphatase to investigate the role of the enzyme in intestinal transport of inorganic phosphate. Biochem J. 1981 Mar 15;194(3):803–809. doi: 10.1042/bj1940803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stieger B., Marxer A., Hauri H. P. Isolation of brush-border membranes from rat and rabbit colonocytes: is alkaline phosphatase a marker enzyme? J Membr Biol. 1986;91(1):19–31. doi: 10.1007/BF01870211. [DOI] [PubMed] [Google Scholar]
- Thorens B., Cheng Z. Q., Brown D., Lodish H. F. Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells. Am J Physiol. 1990 Dec;259(6 Pt 1):C279–C285. doi: 10.1152/ajpcell.1990.259.2.C279. [DOI] [PubMed] [Google Scholar]
- Tulsiani D. R., Opheim D. J., Touster O. Purification and characterization of alpha-D-mannosidase from rat liver golgi membranes. J Biol Chem. 1977 May 25;252(10):3227–3233. [PubMed] [Google Scholar]
- Vayro S., Kemp R., Beechey R. B., Shirazi-Beechey S. Preparation and characterization of basolateral plasma-membrane vesicles from sheep parotid glands. Mechanisms of phosphate and D-glucose transport. Biochem J. 1991 Nov 1;279(Pt 3):843–848. doi: 10.1042/bj2790843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vengesa P. B., Hopfer U. Cytochemical localization of alkaline phosphatase and Na+-pump sites in adult rat colon. J Histochem Cytochem. 1979 Sep;27(9):1231–1235. doi: 10.1177/27.9.39100. [DOI] [PubMed] [Google Scholar]
- Wardzala L. J., Cushman S. W., Salans L. B. Mechanism of insulin action on glucose transport in the isolated rat adipose cell. Enhancement of the number of functional transport systems. J Biol Chem. 1978 Nov 25;253(22):8002–8005. [PubMed] [Google Scholar]
- Wiener H., Turnheim K., van Os C. H. Rabbit distal colon epithelium: I. Isolation and characterization of basolateral plasma membrane vesicles from surface and crypt cells. J Membr Biol. 1989 Sep;110(2):147–162. doi: 10.1007/BF01869470. [DOI] [PubMed] [Google Scholar]



