Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Sep 15;294(Pt 3):635–638. doi: 10.1042/bj2940635

Lipogenesis from lactate in rat neurons and astrocytes in primary culture.

A Tabernero 1, J P Bolaños 1, J M Medina 1
PMCID: PMC1134508  PMID: 8379917

Abstract

The rate of synthesis of phospholipid and sterol species from L-lactate in neurons and astrocytes in primary culture was studied. Both types of cells actively utilized lactate as lipid precursor, although the rate of lipogenesis was about 2-fold greater in astrocytes than in neurons. The incorporation of lactate into phospholipids was significantly higher than that into sterols in both types of cells, but the ratio of phospholipid/sterol synthesis was much higher in astrocytes than in neurons. Phosphatidylcholine (PC) was the main phospholipid synthesized in both types of cells, followed by phosphatidylethanolamine (PE), phosphatidylserine and phosphatidylinositol. No detectable synthesis of sphingomyelins was observed. The ratio of PC/PE synthesis was about 2-fold higher in astrocytes than in neurons. The main sterol synthesized in neurons was lanosterol, followed by desmosterol. However, the main sterol synthesized in astrocytes was desmosterol, followed by lanosterol and cholesterol. The different ratios of phospholipid/sterol and PC/PE synthesis found in neurons and astrocytes may result in different membrane fluidity being higher in astrocytes than in neurons. This may be associated with differences in the functionality of both types of cells.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arizmendi C., Medina J. M. Lactate as an oxidizable substrate for rat brain in vitro during the perinatal period. Biochem J. 1983 Aug 15;214(2):633–635. doi: 10.1042/bj2140633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bignami A., Eng L. F., Dahl D., Uyeda C. T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 1972 Aug 25;43(2):429–435. doi: 10.1016/0006-8993(72)90398-8. [DOI] [PubMed] [Google Scholar]
  3. Blusztajn J. K., Zeisel S. H., Wurtman R. J. Developmental changes in the activity of phosphatidylethanolamine N-methyltransferases in rat brain. Biochem J. 1985 Dec 1;232(2):505–511. doi: 10.1042/bj2320505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bolaños J. P., Medina J. M. Lipogenesis from lactate in fetal rat brain during late gestation. Pediatr Res. 1993 Jan;33(1):66–71. doi: 10.1203/00006450-199301000-00014. [DOI] [PubMed] [Google Scholar]
  5. Bourre J. M., Clément M., Gérard D., Legrand R., Chaudière J. Precursors for cholesterol synthesis (7-dehydrocholesterol, 7-dehydrodesmosterol, and desmosterol): cholesterol/7-dehydrocholesterol ratio as an index of development and aging in PNS but not in CNS. J Neurochem. 1990 Apr;54(4):1196–1199. doi: 10.1111/j.1471-4159.1990.tb01948.x. [DOI] [PubMed] [Google Scholar]
  6. Cremer J. E., Cunningham V. J., Pardridge W. M., Braun L. D., Oldendorf W. H. Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J Neurochem. 1979 Aug;33(2):439–445. doi: 10.1111/j.1471-4159.1979.tb05173.x. [DOI] [PubMed] [Google Scholar]
  7. Cuezva J. M., Moreno F. J., Medina J. M., Mayor F. Prematurity in the rat. I. Fuels and gluconeogenic enzymes. Biol Neonate. 1980;37(1-2):88–95. doi: 10.1159/000241260. [DOI] [PubMed] [Google Scholar]
  8. Dahl D., Bignami A. Preparation of antisera to neurofilament protein from chicken brain and human sciatic nerve. J Comp Neurol. 1977 Dec 15;176(4):645–657. doi: 10.1002/cne.901760412. [DOI] [PubMed] [Google Scholar]
  9. Dainous F., Freysz L., Mozzi R., Dreyfus H., Louis J. C., Porcellati G., Massarelli R. Synthesis of choline phospholipids in neuronal and glial cell cultures by the methylation pathway. FEBS Lett. 1982 Sep 6;146(1):221–223. doi: 10.1016/0014-5793(82)80740-0. [DOI] [PubMed] [Google Scholar]
  10. Dombrowski G. J., Jr, Swiatek K. R., Chao K. L. Lactate, 3-hydroxybutyrate, and glucose as substrates for the early postnatal rat brain. Neurochem Res. 1989 Jul;14(7):667–675. doi: 10.1007/BF00964877. [DOI] [PubMed] [Google Scholar]
  11. Edmond J., Popják G. Transfer of carbon atoms from mevalonate to n-fatty acids. J Biol Chem. 1974 Jan 10;249(1):66–71. [PubMed] [Google Scholar]
  12. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  13. FUMAGALLI R., PAOLETTI R. The identification and significance of desmosterol in the developing human and animal brain. Life Sci. 1963 May;5:291–295. doi: 10.1016/0024-3205(63)90159-0. [DOI] [PubMed] [Google Scholar]
  14. Fernández E., Medina J. M. Lactate utilization by the neonatal rat brain in vitro. Competition with glucose and 3-hydroxybutyrate. Biochem J. 1986 Mar 1;234(2):489–492. doi: 10.1042/bj2340489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fernández E., Valcarce C., Cuezva J. M., Medina J. M. Postnatal hypoglycaemia and gluconeogenesis in the newborn rat. Delayed onset of gluconeogenesis in prematurely delivered newborns. Biochem J. 1983 Aug 15;214(2):525–532. doi: 10.1042/bj2140525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Finkel R. S., Volpe J. J. A potential role for phospholipids in the regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in cultured C-6 glial cells. Effects of N,N-dimethylethanolamine. Biochim Biophys Acta. 1979 Mar 29;572(3):461–471. doi: 10.1016/0005-2760(79)90153-x. [DOI] [PubMed] [Google Scholar]
  17. Girard J. R., Cuendet G. S., Marliss E. B., Kervran A., Rieutort M., Assan R. Fuels, hormones, and liver metabolism at term and during the early postnatal period in the rat. J Clin Invest. 1973 Dec;52(12):3190–3200. doi: 10.1172/JCI107519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hinse C. H., Shah S. N. The desmosterol reductase activity of rat brain during development. J Neurochem. 1971 Oct;18(10):1989–1998. doi: 10.1111/j.1471-4159.1971.tb09604.x. [DOI] [PubMed] [Google Scholar]
  19. Juanes M. C., Arizmendi C., Medina J. M. Attenuation of postnatal hypoxia in the premature newborn rat by maternal treatment with dexamethasone: its relationship with lung phospholipid content. Biol Neonate. 1986;50(6):337–344. doi: 10.1159/000242618. [DOI] [PubMed] [Google Scholar]
  20. KRITCHEVSKY D., HOLMES W. L. Occurrence of desmosterol in developing rat brain. Biochem Biophys Res Commun. 1962 Apr 3;7:128–131. doi: 10.1016/0006-291x(62)90160-2. [DOI] [PubMed] [Google Scholar]
  21. Kaduce T. L., Norton K. C., Spector A. A. A rapid, isocratic method for phospholipid separation by high-performance liquid chromatography. J Lipid Res. 1983 Oct;24(10):1398–1403. [PubMed] [Google Scholar]
  22. Medina J. M., Cuezva J. M., Mayor F. Non- gluconeogenic fate of lactate during the early neonatal period in the rat. FEBS Lett. 1980 May 19;114(1):132–134. doi: 10.1016/0014-5793(80)80876-3. [DOI] [PubMed] [Google Scholar]
  23. Miller R. H., Ffrench-Constant C., Raff M. C. The macroglial cells of the rat optic nerve. Annu Rev Neurosci. 1989;12:517–534. doi: 10.1146/annurev.ne.12.030189.002505. [DOI] [PubMed] [Google Scholar]
  24. Murthy C. R., Hertz L. Pyruvate decarboxylation in astrocytes and in neurons in primary cultures in the presence and the absence of ammonia. Neurochem Res. 1988 Jan;13(1):57–61. doi: 10.1007/BF00971855. [DOI] [PubMed] [Google Scholar]
  25. Norton W. T., Poduslo S. E. Neuronal perikarya and astroglia of rat brain: chemical composition during myelination. J Lipid Res. 1971 Jan;12(1):84–90. [PubMed] [Google Scholar]
  26. Siesjö B. K. Hypoglycemia, brain metabolism, and brain damage. Diabetes Metab Rev. 1988 Mar;4(2):113–144. doi: 10.1002/dmr.5610040203. [DOI] [PubMed] [Google Scholar]
  27. Vicario C., Arizmendi C., Malloch G., Clark J. B., Medina J. M. Lactate utilization by isolated cells from early neonatal rat brain. J Neurochem. 1991 Nov;57(5):1700–1707. doi: 10.1111/j.1471-4159.1991.tb06370.x. [DOI] [PubMed] [Google Scholar]
  28. Vicario C., Medina J. M. Metabolism of lactate in the rat brain during the early neonatal period. J Neurochem. 1992 Jul;59(1):32–40. doi: 10.1111/j.1471-4159.1992.tb08872.x. [DOI] [PubMed] [Google Scholar]
  29. Volpe J. J., Hennessy S. W. Cholesterol biosynthesis and 3-hydroxy-3-methyl-glutaryl coenzyme A reductase in cultured glial and neuronal cells. Regulation by lipoprotein and by certain free sterols. Biochim Biophys Acta. 1977 Mar 25;486(3):408–420. doi: 10.1016/0005-2760(77)90090-x. [DOI] [PubMed] [Google Scholar]
  30. WIDDOWSON E. M. Chemical composition of newly born mammals. Nature. 1950 Oct 14;166(4224):626–628. doi: 10.1038/166626a0. [DOI] [PubMed] [Google Scholar]
  31. Yim S. H., Monsma S., Hertz L., Szuchet S. Lipid and glycolipid metabolism of cultured astrocytes: a time course study. J Neurosci Res. 1986;15(1):29–37. doi: 10.1002/jnr.490150104. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES