Abstract
The ability of O2 metabolites derived from the xanthine-xanthine oxidase system to inhibit mitochondrial function was examined using freshly isolated rat liver mitochondria. Under 2,4-dinitrophenol-uncoupled conditions, mitochondria exposed to free radicals exhibited a significant decrease in O2 consumption supported by NAD(+)-linked substrates, but showed almost no change in O2 consumption in the presence of succinate and ascorbate. Oxidative stress caused the loss of intramitochondrial nicotinamide nucleotides, and addition of NAD+ fully prevented any fall in O2 consumption with NAD(+)-linked substrates. The activity of electron-transfer complex I (NADH oxidase and NADH-cytochrome c oxidoreductase) and the energy-dependent reduction of NAD+ by succinate were unaltered by oxidative stress. Exposure to free radicals also had an uncoupling effect at all three coupling sites. The degree of mitochondrial swelling was closely correlated with the inhibition of State-3 oxidation of site-I substrates and with the increase in State-4 oxidation of succinate. The immunosuppressive agent cyclosporin A completely prevented the mitochondrial damage induced by oxygen free radicals (swelling, Ca2+ release, sucrose trapping, uncoupling and selective inhibition of the mitochondrial respiration of site-I substrates). The same protective effect was found when Ca2+ cycling was prevented, either by chelating Ca2+ with EGTA or by inhibiting Ca2+ reuptake with Ruthenium Red. These findings suggest that the deleterious effect of free radicals on mitochondria in the present experimental system was triggered by the cyclosporin A-sensitive and Ca(2+)-dependent membrane transition, and not by direct impairment of the mitochondrial inner-membrane enzymes.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Nasser I., Crompton M. The reversible Ca2+-induced permeabilization of rat liver mitochondria. Biochem J. 1986 Oct 1;239(1):19–29. doi: 10.1042/bj2390019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boobis A. R., Fawthrop D. J., Davies D. S. Mechanisms of cell death. Trends Pharmacol Sci. 1989 Jul;10(7):275–280. doi: 10.1016/0165-6147(89)90027-8. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Broekemeier K. M., Carpenter-Deyo L., Reed D. J., Pfeiffer D. R. Cyclosporin A protects hepatocytes subjected to high Ca2+ and oxidative stress. FEBS Lett. 1992 Jun 15;304(2-3):192–194. doi: 10.1016/0014-5793(92)80616-o. [DOI] [PubMed] [Google Scholar]
- Carafoli E. The calcium cycle of mitochondria. FEBS Lett. 1979 Aug 1;104(1):1–5. doi: 10.1016/0014-5793(79)81073-x. [DOI] [PubMed] [Google Scholar]
- Carini R., Parola M., Dianzani M. U., Albano E. Mitochondrial damage and its role in causing hepatocyte injury during stimulation of lipid peroxidation by iron nitriloacetate. Arch Biochem Biophys. 1992 Aug 15;297(1):110–118. doi: 10.1016/0003-9861(92)90647-f. [DOI] [PubMed] [Google Scholar]
- Corbisier P., Raes M., Michiels C., Pigeolet E., Houbion A., Delaive E., Remacle J. Respiratory activity of isolated rat liver mitochondria following in vitro exposure to oxygen species: a threshold study. Mech Ageing Dev. 1990 Feb 15;51(3):249–263. doi: 10.1016/0047-6374(90)90075-q. [DOI] [PubMed] [Google Scholar]
- Crompton M., Costi A. A heart mitochondrial Ca2(+)-dependent pore of possible relevance to re-perfusion-induced injury. Evidence that ADP facilitates pore interconversion between the closed and open states. Biochem J. 1990 Feb 15;266(1):33–39. doi: 10.1042/bj2660033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crompton M., McGuinness O., Nazareth W. The involvement of cyclosporin A binding proteins in regulating and uncoupling mitochondrial energy transduction. Biochim Biophys Acta. 1992 Jul 17;1101(2):214–217. [PubMed] [Google Scholar]
- Davidson A. M., Halestrap A. P. Partial inhibition by cyclosporin A of the swelling of liver mitochondria in vivo and in vitro induced by sub-micromolar [Ca2+], but not by butyrate. Evidence for two distinct swelling mechanisms. Biochem J. 1990 May 15;268(1):147–152. doi: 10.1042/bj2680147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Di Monte D., Bellomo G., Thor H., Nicotera P., Orrenius S. Menadione-induced cytotoxicity is associated with protein thiol oxidation and alteration in intracellular Ca2+ homeostasis. Arch Biochem Biophys. 1984 Dec;235(2):343–350. doi: 10.1016/0003-9861(84)90207-8. [DOI] [PubMed] [Google Scholar]
- FRIDOVICH I. Competitive inhibition by myoglobin of the reduction of cytochrome c by xanthine oxidase. J Biol Chem. 1962 Feb;237:584–586. [PubMed] [Google Scholar]
- Fagian M. M., Pereira-da-Silva L., Martins I. S., Vercesi A. E. Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants. J Biol Chem. 1990 Nov 15;265(32):19955–19960. [PubMed] [Google Scholar]
- Fournier N., Ducet G., Crevat A. Action of cyclosporine on mitochondrial calcium fluxes. J Bioenerg Biomembr. 1987 Jun;19(3):297–303. doi: 10.1007/BF00762419. [DOI] [PubMed] [Google Scholar]
- Fridovich I. Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J Biol Chem. 1970 Aug 25;245(16):4053–4057. [PubMed] [Google Scholar]
- Graven S. N., Lardy H. A., Estrada-O S. Antibiotics as tools for metabolic studies. 8. Effect of nonactin homologs on alkali metal cation transport and rate of respiration in mitochondria. Biochemistry. 1967 Feb;6(2):365–371. doi: 10.1021/bi00854a001. [DOI] [PubMed] [Google Scholar]
- HUNTER F. E., Jr, FORD L. Inactivation of oxidative and phosphorylative systems in mitochondria by preincubation with phosphate and other ions. J Biol Chem. 1955 Sep;216(1):357–369. [PubMed] [Google Scholar]
- Hardy L., Clark J. B., Darley-Usmar V. M., Smith D. R., Stone D. Reoxygenation-dependent decrease in mitochondrial NADH:CoQ reductase (Complex I) activity in the hypoxic/reoxygenated rat heart. Biochem J. 1991 Feb 15;274(Pt 1):133–137. doi: 10.1042/bj2740133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hillered L., Ernster L. Respiratory activity of isolated rat brain mitochondria following in vitro exposure to oxygen radicals. J Cereb Blood Flow Metab. 1983 Jun;3(2):207–214. doi: 10.1038/jcbfm.1983.28. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L., Vercesi A., Bababunmi E. A. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1690–1694. doi: 10.1073/pnas.75.4.1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lim L. O., Bortell R., Neims A. H. Nitrofurantoin inhibition of mouse liver mitochondrial respiration involving NAD-linked substrates. Toxicol Appl Pharmacol. 1986 Jul;84(3):493–499. doi: 10.1016/0041-008x(86)90254-1. [DOI] [PubMed] [Google Scholar]
- Malis C. D., Bonventre J. V. Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria. A model for post-ischemic and toxic mitochondrial damage. J Biol Chem. 1986 Oct 25;261(30):14201–14208. [PubMed] [Google Scholar]
- Masaki N., Kyle M. E., Serroni A., Farber J. L. Mitochondrial damage as a mechanism of cell injury in the killing of cultured hepatocytes by tert-butyl hydroperoxide. Arch Biochem Biophys. 1989 May 1;270(2):672–680. doi: 10.1016/0003-9861(89)90550-x. [DOI] [PubMed] [Google Scholar]
- Masini A., Trenti T., Ceccarelli-Stanzani D., Ventura E. The effect of ferric iron complex on isolated rat liver mitochondria. I. Respiratory and electrochemical responses. Biochim Biophys Acta. 1985 Oct 29;810(1):20–26. doi: 10.1016/0005-2728(85)90202-6. [DOI] [PubMed] [Google Scholar]
- Mason R. P., Holtzman J. L. The role of catalytic superoxide formation in the O2 inhibition of nitroreductase. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1267–1274. doi: 10.1016/0006-291x(75)90163-1. [DOI] [PubMed] [Google Scholar]
- Masumoto N., Tasaka K., Miyake A., Tanizawa O. Superoxide anion increases intracellular free calcium in human myometrial cells. J Biol Chem. 1990 Dec 25;265(36):22533–22536. [PubMed] [Google Scholar]
- Nishida T., Shibata H., Koseki M., Nakao K., Kawashima Y., Yoshida Y., Tagawa K. Peroxidative injury of the mitochondrial respiratory chain during reperfusion of hypothermic rat liver. Biochim Biophys Acta. 1987 Jan 16;890(1):82–88. doi: 10.1016/0005-2728(87)90071-5. [DOI] [PubMed] [Google Scholar]
- Richter C. Hydroperoxide effects on redox state of pyridine nucleotides and Ca2+ retention by mitochondria. Methods Enzymol. 1984;105:435–441. doi: 10.1016/s0076-6879(84)05061-8. [DOI] [PubMed] [Google Scholar]
- Schlegel J., Schweizer M., Richter C. 'Pore' formation is not required for the hydroperoxide-induced Ca2+ release from rat liver mitochondria. Biochem J. 1992 Jul 1;285(Pt 1):65–69. doi: 10.1042/bj2850065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeyama N., Itoh Y., Kitazawa Y., Tanaka T. Altered hepatic mitochondrial fatty acid oxidation and ketogenesis in endotoxic rats. Am J Physiol. 1990 Oct;259(4 Pt 1):E498–E505. doi: 10.1152/ajpendo.1990.259.4.E498. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Marcillat O., Giulivi C., Ernster L., Davies K. J. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem. 1990 Sep 25;265(27):16330–16336. [PubMed] [Google Scholar]