Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Sep 15;294(Pt 3):727–733. doi: 10.1042/bj2940727

Acyloin production from aldehydes in the perfused rat heart: the potential role of pyruvate dehydrogenase.

J A Montgomery 1, M Jetté 1, S Huot 1, C Des Rosiers 1
PMCID: PMC1134523  PMID: 8379929

Abstract

Aldehydes represent an important class of cytotoxic products derived from free radical-induced lipid peroxidation which may contribute to reperfusion injury following myocardial infarct. Metabolism of aldehydes in the heart has not been well characterized aside from conjugation of unsaturated aldehydes with glutathione. However, aliphatic aldehydes like hexanal do not form stable glutathione conjugates. We have recently demonstrated in vitro that pig heart pyruvate dehydrogenase catalyses a reaction between pyruvate and saturated aldehydes to produce acyloins (3-hydroxyalkan-2-ones). In the present study, rat hearts were perfused with various aldehydes and pyruvate. Acyloins were generated from saturated aldehydes (butanal, hexanal or nonanal), but not from 2-hexanal (an unsaturated aldehyde) or malondialdehyde. Hearts perfused with 2 mM pyruvate and 10-100 microM hexanal rapidly took up hexanal in a dose-related manner (140-850 nmol/min), and released 3-hydroxyoctan-2-one (0.7-30 nmol/min), 2,3-octanediol (0-12 nmol/min) and hexanol (10-200 nmol/min). Small quantities of hexanoic acid (about 10 nmol/min) were also released. The rate of release of acyloin metabolites rose with increased concentration of hexanal, whereas hexanol release attained a plateau when hexanal infusion concentrations rose above 50 microM. Up to 50% of hexanal uptake could be accounted for by metabolite release. Less than 0.5% of hexanal uptake was found to be bound to acid-precipitable macromolecules. When hearts perfused with 50 microM hexanal and 2 mM pyruvate were subjected to a 15 min ischaemic period, the rates of release of 2,3-octanediol, 3-hydroxyoctan-2-one, hexanol and hexanoate during the reperfusion period were not significantly different from those in the pre-ischaemic period. Our results indicate that saturated aldehydes can be metabolically converted by the heart into stable diffusible compounds.

Full text

PDF
727

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alkonyi I., Bolygó E., Gyócsi L., Szabó D. Studies on the formation of acetoin from acetaldehyde by the pyruvate dehydrogenase complex and its regulation. Eur J Biochem. 1976 Jul 15;66(3):551–557. doi: 10.1111/j.1432-1033.1976.tb10581.x. [DOI] [PubMed] [Google Scholar]
  2. Ambrosio G., Flaherty J. T., Duilio C., Tritto I., Santoro G., Elia P. P., Condorelli M., Chiariello M. Oxygen radicals generated at reflow induce peroxidation of membrane lipids in reperfused hearts. J Clin Invest. 1991 Jun;87(6):2056–2066. doi: 10.1172/JCI115236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballagi-Pordány G., Richter J., Koltai M., Aranyi Z., Pogátsa G., Schaper W. Is malondialdehyde a marker of the effect of oxygen free radicals in rat heart tissue? Basic Res Cardiol. 1991 May-Jun;86(3):266–272. doi: 10.1007/BF02190606. [DOI] [PubMed] [Google Scholar]
  4. Bounds P. L., Winston G. W. The reaction of xanthine oxidase with aldehydic products of lipid peroxidation. Free Radic Biol Med. 1991;11(5):447–453. doi: 10.1016/0891-5849(91)90060-g. [DOI] [PubMed] [Google Scholar]
  5. Brasch H., Schoenberg M. H., Younes M. No evidence for an increased lipid peroxidation during reoxygenation in Langendorff hearts and isolated atria of rats. J Mol Cell Cardiol. 1989 Jul;21(7):697–707. doi: 10.1016/0022-2828(89)90611-1. [DOI] [PubMed] [Google Scholar]
  6. Brophy P. M., Barrett J. Detoxification of secondary products of lipid peroxidation in the cytosol of a mouse fibroblast cell line. Biochem Cell Biol. 1990 Nov;68(11):1288–1291. doi: 10.1139/o90-191. [DOI] [PubMed] [Google Scholar]
  7. Brown G. K., Cromby C. H., Manning N. J., Pollitt R. J. Urinary organic acids in succinic semialdehyde dehydrogenase deficiency: evidence of alpha-oxidation of 4-hydroxybutyric acid, interaction of succinic semialdehyde with pyruvate dehydrogenase and possible secondary inhibition of mitochondrial beta-oxidation. J Inherit Metab Dis. 1987;10(4):367–375. doi: 10.1007/BF01799979. [DOI] [PubMed] [Google Scholar]
  8. Bünger R., Mallet R. T., Hartman D. A. Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure. Eur J Biochem. 1989 Mar 1;180(1):221–233. doi: 10.1111/j.1432-1033.1989.tb14637.x. [DOI] [PubMed] [Google Scholar]
  9. Bünger R., Swindall B., Brodie D., Zdunek D., Stiegler H., Walter G. Pyruvate attenuation of hypoxia damage in isolated working guinea-pig heart. J Mol Cell Cardiol. 1986 Apr;18(4):423–438. doi: 10.1016/s0022-2828(86)80905-1. [DOI] [PubMed] [Google Scholar]
  10. Camacho S. A., Parmley W. W., James T. L., Abe H., Wu S. T., Botvinick E. H., Watters T. A., Schiller N., Sievers R., Wikman-Coffelt J. Substrate regulation of the nucleotide pool during regional ischaemia and reperfusion in an isolated rat heart preparation: a phosphorus-31 magnetic resonance spectroscopy analysis. Cardiovasc Res. 1988 Mar;22(3):193–203. doi: 10.1093/cvr/22.3.193. [DOI] [PubMed] [Google Scholar]
  11. Ceconi C., Cargnoni A., Pasini E., Condorelli E., Curello S., Ferrari R. Evaluation of phospholipid peroxidation as malondialdehyde during myocardial ischemia and reperfusion injury. Am J Physiol. 1991 Apr;260(4 Pt 2):H1057–H1061. doi: 10.1152/ajpheart.1991.260.4.H1057. [DOI] [PubMed] [Google Scholar]
  12. Cooper R. H., Randle P. J., Denton R. M. Regulation of heart muscle pyruvate dehydrogenase kinase. Biochem J. 1974 Dec;143(3):625–641. doi: 10.1042/bj1430625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Des Rosiers C., Montgomery J. A., Desrochers S., Garneau M., David F., Mamer O. A., Brunengraber H. Interference of 3-hydroxyisobutyrate with measurements of ketone body concentration and isotopic enrichment by gas chromatography-mass spectrometry. Anal Biochem. 1988 Aug 15;173(1):96–105. doi: 10.1016/0003-2697(88)90165-0. [DOI] [PubMed] [Google Scholar]
  14. Des Rosiers C., Rivest M. J., Boily M. J., Jetté M., Carrobé-Cohen A., Kumar A. Gas chromatographic-mass spectrometric assay of tissue malondialdehyde, 4-hydroxynonenal, and other aldehydes after their reduction to stable alcohols. Anal Biochem. 1993 Jan;208(1):161–170. doi: 10.1006/abio.1993.1023. [DOI] [PubMed] [Google Scholar]
  15. Di Pierro D., Tavazzi B., Lazzarino G., Giardina B. Malondialdehyde is a biochemical marker of peroxidative damage in the isolated reperfused rat heart. Mol Cell Biochem. 1992 Oct 21;116(1-2):193–196. doi: 10.1007/BF01270587. [DOI] [PubMed] [Google Scholar]
  16. Esterbauer H., Schaur R. J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11(1):81–128. doi: 10.1016/0891-5849(91)90192-6. [DOI] [PubMed] [Google Scholar]
  17. Esterbauer H., Zollner H., Lang J. Metabolism of the lipid peroxidation product 4-hydroxynonenal by isolated hepatocytes and by liver cytosolic fractions. Biochem J. 1985 Jun 1;228(2):363–373. doi: 10.1042/bj2280363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Forsey R. G., Reid K., Brosnan J. T. Competition between fatty acids and carbohydrate or ketone bodies as metabolic fuels for the isolated perfused heart. Can J Physiol Pharmacol. 1987 Mar;65(3):401–406. doi: 10.1139/y87-067. [DOI] [PubMed] [Google Scholar]
  19. Gauduel Y., Duvelleroy M. A. Role of oxygen radicals in cardiac injury due to reoxygenation. J Mol Cell Cardiol. 1984 May;16(5):459–470. doi: 10.1016/s0022-2828(84)80617-3. [DOI] [PubMed] [Google Scholar]
  20. Grune T., Siems W., Kowalewski J., Zollner H., Esterbauer H. Identification of metabolic pathways of the lipid peroxidation product 4-hydroxynonenal by enterocytes of rat small intestine. Biochem Int. 1991 Dec;25(5):963–971. [PubMed] [Google Scholar]
  21. Guarnieri C., Flamigni F., Caldarera C. M. Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart. J Mol Cell Cardiol. 1980 Aug;12(8):797–808. doi: 10.1016/0022-2828(80)90081-4. [DOI] [PubMed] [Google Scholar]
  22. Holmes R. S. Electrophoretic analyses of alcohol dehydrogenase, aldehyde dehydrogenase, aldehyde oxidase, sorbitol dehydrogenase and xanthine oxidase from mouse tissues. Comp Biochem Physiol B. 1978;61(3):339–346. doi: 10.1016/0305-0491(78)90134-7. [DOI] [PubMed] [Google Scholar]
  23. Ishikawa T., Esterbauer H., Sies H. Role of cardiac glutathione transferase and of the glutathione S-conjugate export system in biotransformation of 4-hydroxynonenal in the heart. J Biol Chem. 1986 Feb 5;261(4):1576–1581. [PubMed] [Google Scholar]
  24. Jakoby W. B., Ziegler D. M. The enzymes of detoxication. J Biol Chem. 1990 Dec 5;265(34):20715–20718. [PubMed] [Google Scholar]
  25. Janero D. R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9(6):515–540. doi: 10.1016/0891-5849(90)90131-2. [DOI] [PubMed] [Google Scholar]
  26. Kobayashi K., Neely J. R. Effects of ischemia and reperfusion on pyruvate dehydrogenase activity in isolated rat hearts. J Mol Cell Cardiol. 1983 Jun;15(6):359–367. doi: 10.1016/0022-2828(83)90320-6. [DOI] [PubMed] [Google Scholar]
  27. Kohman L. J., Veit L. J. Neonatal myocardium resists reperfusion injury. J Surg Res. 1991 Aug;51(2):133–137. doi: 10.1016/0022-4804(91)90083-x. [DOI] [PubMed] [Google Scholar]
  28. Koller P. T., Bergmann S. R. Reduction of lipid peroxidation in reperfused isolated rabbit hearts by diltiazem. Circ Res. 1989 Sep;65(3):838–846. doi: 10.1161/01.res.65.3.838. [DOI] [PubMed] [Google Scholar]
  29. Lee H. S., Csallany A. S. Measurement of free and bound malondialdehyde in vitamin E-deficient and -supplemented rat liver tissues. Lipids. 1987 Feb;22(2):104–107. doi: 10.1007/BF02534861. [DOI] [PubMed] [Google Scholar]
  30. Lenz M. L., Michael L. H., Smith C. V., Hughes H., Shappell S. B., Taylor A. A., Entman M. L., Mitchell J. R. Glutathione disulfide formation and lipid peroxidation during cardiac ischemia and reflow in the dog in vivo. Biochem Biophys Res Commun. 1989 Oct 31;164(2):722–727. doi: 10.1016/0006-291x(89)91519-2. [DOI] [PubMed] [Google Scholar]
  31. Mamer O. A., Montgomery J. A., Tjoa S. S., Crawhall J. C., Feldkamp C. S. Profiles in altered metabolism I--the organic acids accumulating in acute non-diabetic ketoacidosis associated with alcoholism. Biomed Mass Spectrom. 1978 Apr;5(4):287–290. doi: 10.1002/bms.1200050403. [DOI] [PubMed] [Google Scholar]
  32. Miki S., Ashraf M., Salka S., Sperelakis N. Myocardial dysfunction and ultrastructural alterations mediated by oxygen metabolites. J Mol Cell Cardiol. 1988 Nov;20(11):1009–1024. doi: 10.1016/0022-2828(88)90578-0. [DOI] [PubMed] [Google Scholar]
  33. Montgomery J. A., Des Rosiers C., Brunengraber H. Biosynthesis and characterization of 3-hydroxyalkan-2-ones and 2,3-alkanediols: potential products of aldehyde metabolism. Biol Mass Spectrom. 1992 May;21(5):242–248. doi: 10.1002/bms.1200210504. [DOI] [PubMed] [Google Scholar]
  34. Montgomery J. A., Jetté M., Brunengraber H. Assay of physiological levels of 2,3-butanediol diastereomers in blood and urine by gas chromatography-mass spectrometry. Anal Biochem. 1990 Feb 15;185(1):71–76. doi: 10.1016/0003-2697(90)90256-9. [DOI] [PubMed] [Google Scholar]
  35. O'Donnell-Tormey J., Nathan C. F., Lanks K., DeBoer C. J., de la Harpe J. Secretion of pyruvate. An antioxidant defense of mammalian cells. J Exp Med. 1987 Feb 1;165(2):500–514. doi: 10.1084/jem.165.2.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Olson M. S., Dennis S. C., DeBuysere M. S., Padma A. The regulation of pyruvate dehydrogenase in the isolated perfused rat heart. J Biol Chem. 1978 Oct 25;253(20):7369–7375. [PubMed] [Google Scholar]
  37. Park Y., Kanekal S., Kehrer J. P. Oxidative changes in hypoxic rat heart tissue. Am J Physiol. 1991 May;260(5 Pt 2):H1395–H1405. doi: 10.1152/ajpheart.1991.260.5.H1395. [DOI] [PubMed] [Google Scholar]
  38. Rao P. S., Cohen M. V., Mueller H. S. Production of free radicals and lipid peroxides in early experimental myocardial ischemia. J Mol Cell Cardiol. 1983 Oct;15(10):713–716. doi: 10.1016/0022-2828(83)90260-2. [DOI] [PubMed] [Google Scholar]
  39. Romaschin A. D., Rebeyka I., Wilson G. J., Mickle D. A. Conjugated dienes in ischemic and reperfused myocardium: an in vivo chemical signature of oxygen free radical mediated injury. J Mol Cell Cardiol. 1987 Mar;19(3):289–302. doi: 10.1016/s0022-2828(87)80596-5. [DOI] [PubMed] [Google Scholar]
  40. Rutstein D. D., Veech R. L., Nickerson R. J., Felver M. E., Vernon A. A., Needham L. L., Kishore P., Thacker S. B. 2,3-butanediol: an unusual metabolite in the serum of severely alcoholic men during acute intoxication. Lancet. 1983 Sep 3;2(8349):534–537. doi: 10.1016/s0140-6736(83)90568-8. [DOI] [PubMed] [Google Scholar]
  41. Salahudeen A. K., Clark E. C., Nath K. A. Hydrogen peroxide-induced renal injury. A protective role for pyruvate in vitro and in vivo. J Clin Invest. 1991 Dec;88(6):1886–1893. doi: 10.1172/JCI115511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sladek N. E., Manthey C. L., Maki P. A., Zhang Z., Landkamer G. J. Xenobiotic oxidation catalyzed by aldehyde dehydrogenases. Drug Metab Rev. 1989;20(2-4):697–720. doi: 10.3109/03602538909103572. [DOI] [PubMed] [Google Scholar]
  43. Taegtmeyer H., Hems R., Krebs H. A. Utilization of energy-providing substrates in the isolated working rat heart. Biochem J. 1980 Mar 15;186(3):701–711. doi: 10.1042/bj1860701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wikman-Coffelt J., Wagner S., Wu S., Parmley W. Alcohol and pyruvate cardioplegia. Twenty-four-hour in situ preservation of hamster hearts. J Thorac Cardiovasc Surg. 1991 Mar;101(3):509–516. [PubMed] [Google Scholar]
  45. Witz G. Biological interactions of alpha,beta-unsaturated aldehydes. Free Radic Biol Med. 1989;7(3):333–349. doi: 10.1016/0891-5849(89)90137-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES