Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Sep 15;294(Pt 3):835–839. doi: 10.1042/bj2940835

Is pyridoxal 5'-phosphate an affinity label for phosphate-binding sites in proteins?: The case of bovine glutamate dehydrogenase.

Z Valinger 1, P C Engel 1, D E Metzler 1
PMCID: PMC1134537  PMID: 8379938

Abstract

The effects of pyridoxal 5'-phosphate (PalP) on ox liver glutamate dehydrogenase (94% inactivation by 1.8 mM reagent at pH 7 and 25 degrees C) have been compared with those of three analogues, 5'-deoxypyridoxal (96% inactivation), pyridoxal 5'-sulphate (97%) and pyridoxal 5-methylsulphonate (94%), in order to establish whether PalP acts as an affinity label for this enzyme. Like PalP and unlike pyridoxal, which is a much less potent inactivator, none of the analogues has a free 5'-OH group to cyclize with the aldehyde function. The result with 5'-deoxypyridoxal shows that a negative charge, such as that of the phosphate group, is not required for efficient inactivation. With all four reagents, addition of an excess of cysteine or lysine led to 90-100% re-activation over 3-20 h. Dialysis also caused reactivation to a similar extent. A combination of 2.15 mM NADH, 1 mM GTP and 10 mM 2-oxoglutarate gave complete protection against PalP, but only partial protection against the analogues. 5'-Deoxypyridoxal still caused 20-25% inactivation in the presence of the protection mixture. Absorbance measurements after reduction with NaBH4 show the characteristic features of a reduced Schiff's base and allowed estimation of the extent of reaction. With all the reagents the protection mixture decreased incorporation by about 1 mol/mol, but levels of incorporation without protection varied from about 2 mol/mol for PalP up to about 5 mol/mol for 5'-deoxypyridoxal. The labelling at additional sites may explain the residual inactivation in the presence of potent protecting agents.

Full text

PDF
835

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson B. M., Anderson C. D., Churchich J. E. Inhibition of glutamic dehydrogenase by pyridoxal 5'-phosphate. Biochemistry. 1966 Sep;5(9):2893–2900. doi: 10.1021/bi00873a017. [DOI] [PubMed] [Google Scholar]
  2. CORDES E. H., JENCKS W. P. Semicarbazone formation from pyridoxal, pyridoxal phosphate, and their Schiff bases. Biochemistry. 1962 Sep;1:773–778. doi: 10.1021/bi00911a007. [DOI] [PubMed] [Google Scholar]
  3. Chen S. S., Engel P. C. Ox liver glutamate dehydrogenase. The role of lysine-126 reappraised in the light of studies of inhibition and inactivation by pyridoxal 5'-phosphate. Biochem J. 1975 Sep;149(3):619–626. doi: 10.1042/bj1490619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen S. S., Engel P. C. The equilibrium position of the reaction of bovine liver glutamate dehydrogenase with pyridoxal5'-phosphate. A demonstration that covalent modification with this reagent completely abolishes catalytic activity. Biochem J. 1975 May;147(2):351–358. doi: 10.1042/bj1470351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen S., Engel P. C. Equilibrium protection studies of the interaction of bovine glutamate dehydrogenase with purine nucleotide effectors. FEBS Lett. 1975 Oct 15;58(1):202–206. doi: 10.1016/0014-5793(75)80259-6. [DOI] [PubMed] [Google Scholar]
  6. Chen S., Engel P. C. Protection of glutamate dehydrogenase by nicotinamide-adenine dinucleotide against reversible inactivation by pyridoxal 5'-phosphate as a sensitive indicator of conformational change induced by substrates and substrate analogues. Biochem J. 1974 Dec;143(3):569–574. doi: 10.1042/bj1430569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DALZIEL K. Kinetic studies of liver alcohol dehydrogenase. Biochem J. 1962 Aug;84:244–254. doi: 10.1042/bj0840244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DEMPSEY W. B., CHRISTENSEN H. N. The specific binding of pyridoxal 5'-phosphate to bovine plasma albumin. J Biol Chem. 1962 Apr;237:1113–1120. [PubMed] [Google Scholar]
  9. Engel P. C., Dalziel K. Kinetic studies of glutamate dehydrogenase with glutamate and norvaline as substrates. Coenzyme activation and negative homotropic interactions in allosteric enzymes. Biochem J. 1969 Dec;115(4):621–631. doi: 10.1042/bj1150621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frerman F. E., Andreone P., Mielke D. Reaction of pyridoxal 5'-phosphate with Escherichia coli CoA transferase: evidence for an essential lysine residue. Arch Biochem Biophys. 1977 Jun;181(2):508–515. doi: 10.1016/0003-9861(77)90257-0. [DOI] [PubMed] [Google Scholar]
  11. Goldin B. R., Frieden C. The effect of pyridoxal phosphate modification on the catalytic and regulatory properties of bovine liver glutamate dehydrogenase. J Biol Chem. 1972 Apr 10;247(7):2139–2144. [PubMed] [Google Scholar]
  12. Gould K. G., Engel P. C. Modification of mouse testicular lactate dehydrogenase by pyridoxal 5'-phosphate. Biochem J. 1980 Nov 1;191(2):365–371. doi: 10.1042/bj1910365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gould K. G., Engel P. C. The reactions of pyridoxal 5'-phosphate with the M4 and H4 isoenzymes of pig lactate dehydrogenase. Arch Biochem Biophys. 1982 May;215(2):498–507. doi: 10.1016/0003-9861(82)90108-4. [DOI] [PubMed] [Google Scholar]
  14. Hahn L. H., Hammes G. G. Structural mapping of aspartate transcarbamoylase by fluorescence energy-transfer measurements: determination of the distance between catalytic sites of different subunits. Biochemistry. 1978 Jun 13;17(12):2423–2429. doi: 10.1021/bi00605a027. [DOI] [PubMed] [Google Scholar]
  15. Harris C. M., Johnson R. J., Metzler D. E. Band-shape analysis and resolution of electronic spectra of pyridoxal phosphate and other 3-hydroxypyridine-4-aldehydes. Biochim Biophys Acta. 1976 Feb 24;421(2):181–194. doi: 10.1016/0304-4165(76)90284-1. [DOI] [PubMed] [Google Scholar]
  16. Lilley K. S., Engel P. C. The essential active-site lysines of clostridial glutamate dehydrogenase. A study with pyridoxal-5'-phosphate. Eur J Biochem. 1992 Jul 15;207(2):533–540. doi: 10.1111/j.1432-1033.1992.tb17079.x. [DOI] [PubMed] [Google Scholar]
  17. McKinley-McKee J. S., Morris D. L. The lysines in liver alcohol dehydrogenase. Chemical modification with pyridoxal 5'-phosphate and methyl picolinimidate. Eur J Biochem. 1972 Jun 23;28(1):1–11. doi: 10.1111/j.1432-1033.1972.tb01877.x. [DOI] [PubMed] [Google Scholar]
  18. Minchiotti L., Ronchi S., Rippa M. Amino acid sequence around the pyridoxal 5'-phosphate binding sites of 6-phosphogluconate dehydrogenase. Biochim Biophys Acta. 1981 Jan 15;657(1):232–242. doi: 10.1016/0005-2744(81)90147-9. [DOI] [PubMed] [Google Scholar]
  19. Ngo T. T., Barbeau A. Reversible inactivation of rat brain pyruvate dehydrogenase multienzyme complex by pyridoxal 5'-phosphate. Int J Biochem. 1979;10(11):937–941. doi: 10.1016/0020-711x(79)90127-7. [DOI] [PubMed] [Google Scholar]
  20. Ogawa H., Fujioka M. The reaction of pyridoxal 5'-phosphate with an essential lysine residue of saccharopine dehydrogenase (L-lysine-forming). J Biol Chem. 1980 Aug 10;255(15):7420–7425. [PubMed] [Google Scholar]
  21. Piszkiewicz D., Smith E. L. Bovine liver glutamate dehydrogenase. Equilibria and kinetics of imine formation by lysine-97 with pyridoxal 5'-phosphate. Biochemistry. 1971 Nov 23;10(24):4544–4552. doi: 10.1021/bi00800a031. [DOI] [PubMed] [Google Scholar]
  22. Piszkiewicz D., Smith E. L. Bovine liver glutamate dehydrogenase. Equilibria and kinetics of inactivation by pyridoxal. Biochemistry. 1971 Nov 23;10(24):4538–4544. doi: 10.1021/bi00800a030. [DOI] [PubMed] [Google Scholar]
  23. Raetz C. R., Auld D. S. Schiff bases of pyridoxal phosphate with active center lysines of ribonuclease A. Biochemistry. 1972 Jun 6;11(12):2229–2236. doi: 10.1021/bi00762a004. [DOI] [PubMed] [Google Scholar]
  24. Ritchey J. M., Gibbons I., Schachman H. K. Reactivation of enzymes by light-stimulated cleavage of reduced pyridoxal 5'-phosphate-enzyme complexes. Biochemistry. 1977 Oct 18;16(21):4584–4590. doi: 10.1021/bi00640a008. [DOI] [PubMed] [Google Scholar]
  25. Ronchi S., Zapponi M. C., Ferri G. Inhibition by pyridoxal-phosphate of glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1969 Apr;8(3):325–331. doi: 10.1111/j.1432-1033.1969.tb00531.x. [DOI] [PubMed] [Google Scholar]
  26. Schnackerz K. D., Noltmann E. A. Pyridoxal 5'-phosphate as a site-specific protein reagent for a catalytically critical lysine residue in rabbit muscle phosphoglucose isomerase. Biochemistry. 1971 Dec 21;10(26):4837–4843. doi: 10.1021/bi00802a002. [DOI] [PubMed] [Google Scholar]
  27. Shapiro S., Enser M., Pugh E., Horecker B. L. The effect of pyridoxal phosphate on rabbit muscle aldolase. Arch Biochem Biophys. 1968 Nov;128(2):554–562. doi: 10.1016/0003-9861(68)90062-3. [DOI] [PubMed] [Google Scholar]
  28. Talbot J. C., Gros C., Cosson M. P., Pantaloni D. Physicochemical evidence for the existence of two pyridoxal 5'-phosphate binding sites on glutamate dehydrogenase and characterization of their functional role. Biochim Biophys Acta. 1977 Sep 27;494(1):19–32. doi: 10.1016/0005-2795(77)90131-3. [DOI] [PubMed] [Google Scholar]
  29. Whitley E. J., Jr, Ginsburg A. A spectral probe near the subunit catalytic site of glutamine synthetase from Escherichia coli. Reduced pyridoxal 5'-phosphate.enzyme complexes. J Biol Chem. 1978 Oct 10;253(19):7017–7025. [PubMed] [Google Scholar]
  30. Yang I. Y., Khomutov R. M., Metzler D. E. Reaction of pyridoxal 5'-sulfate with apoenzyme of aspartate aminotransferase. Covalent labeling of the protein with elimination of sulfate. Biochemistry. 1974 Sep 10;13(19):3877–3884. doi: 10.1021/bi00716a009. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES