Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2024 Aug 25;14:19723. doi: 10.1038/s41598-024-70523-2

Multiple rogue wave, double-periodic soliton and breather wave solutions for a generalized breaking soliton system in (3 + 1)-dimensions

Wenfang Li 1, Yingchun Kuang 2, Jalil Manafian 3,4,, Somaye Malmir 5, Baharak Eslami 5, K H Mahmoud 6, A S A Alsubaie 6
PMCID: PMC11345461  PMID: 39183208

Abstract

We focused on solitonic phenomena in wave propagation which was extracted from a generalized breaking soliton system in (3 + 1)-dimensions. The model describes the interaction phenomena between Riemann wave and long wave via two space variable in nonlinear media. Abundant double-periodic soliton, breather wave and the multiple rogue wave solutions to a generalized breaking soliton system by the Hirota bilinear form and a mixture of exponentials and trigonometric functions are presented. Periodic-soliton, breather wave and periodic are studied with the usage of symbolic computation. In addition, the symbolic computation and the applied methods for governing model are investigated. Through three-dimensional graph, density graph, and two-dimensional design using Maple, the physical features of double-periodic soliton and breather wave solutions are explained all right. The findings demonstrate the investigated model’s broad variety of explicit solutions. All outcomes in this work are necessary to understand the physical meaning and behavior of the explored results and shed light on the significance of the investigation of several nonlinear wave phenomena in sciences and engineering.

Keywords: Generalized breaking soliton system, Double-periodic soliton, Breather wave, Hirota operator, Travelling wave

Subject terms: Mathematics and computing, Optics and photonics

Introduction

Currently, the nonlinear partial differential equations are widely utilized to determine the exact soliton solution of a variety of natural phenomena15. Nonlinear phenomena use in various scientific fields such as, plasma physics, solid state physics, fluid dynamics, chemical kinetics and mathematical biology610. The applications of nonlinear models cover physics11,12, network13, computer science14, and many other fields15. Exact solutions can be evaluated without the effect of nonlinear resistances in propagation using Hirota derivatives. In the literature16, there are various viewpoints on the fractional derivative operator. However, numerous scholars and scientists have been investigating the potential of nonlinear operator for the past three decades such as Galerkin finite element technique17, Paul–Painlevé approach18, the Exp-function scheme19, the extended trial equation scheme20, the tan(ϕ/2)-expansion scheme21, etc. Based on the above methods, plenty of the exact solutions including different schemes have been worked, for example, the generalized exponential rational function method22, Gaussian traveling wave solution23, seismic attenuation for geotechnical24, the generalized trial equation scheme25, a wavelet approach26. Since the 1950s, the concept of soliton has been put forward in the study of nonlinear phenomena, which makes the study of nonlinear partial differential equations (NLPDEs) solution become a hot spot in nonlinear science including orthogonal frequency division multiplexing27, Fluid inverse volumetric modeling28, network governance step by step method29 and the neural network method30. However, due to the complexity of NLPDEs, the results of mathematical research have not provided a universally effective method to find the exact solution at present. With the emergence of a variety of solution methods, not only the past difficult to solve the equation has been solved, but also new, has important physical meaning of the solution has been discovered and applied in practice. Nonlinear differential equations have been widely employed to describe a wide range of physical processes, not just in mathematics but also in physics, biology, and engineering, for example: the conservation of mass, electrochemical analysis, groundwater flow problem, viscoelastic damping models, fractional quantum mechanics, classical mechanics, and propagation of acoustical waves3135. Several effective techniques have been established to find the clear and specific solutions of nonlinear models for instance such as machine learning methods36, He’s variational direct technique37, the discrete mean-field stochastic systems38, bistable origami flexible gripper39, the breather wave solutions40. The nonlinear problems are characterized by dispersive and dissipative effects, advection, convection, and diffusion process such as N-lump solutions41, seismic wave attenuation42, the development of deep geothermal energy43, hyperbolic shear polaritons44, the modified Schrödinger’s equation via innovative approaches45. A wide class of analytical techniques other schemes have been applied to solve nonlinear problems such as the parabolic dish solar collector46, the renewable energy sources47, a hybrid convolutional neural network48, a hybrid robust-stochastic approach49, a optimal chiller loading50. Furthermore, many mathematical models have been constructed based on more theory and applied assumptions. Many researchers have constructed on these problems including the distributed series reactor51, an intelligent algorithm52, the deep learning method53, the trigonometric quadrature rules54, nonlinearities of SiGe bipolar phototransistor55. Several researchers have studied the modified and optimization technique such as the robust optimization technique56, random variables with Copula theory57, and power systems58. Jiand and co-workers studied the asymptotic properties for the drift parameter estimators in the fractional Ornstein-Uhlenbeck process with periodic mean function and long range dependence59. Authors investigated the distinct types of the exact soliton solutions to an important model called the beta-time fractional (1 + 1)-dimensional nonlinear Van der Waals equation60. The versatility of electrofabrication for the customized manufacturing of functional gradient soft matter was studied in61. The multiple soliton solutions for the generalized Bogoyavlensky–Konopelchenko equation along with solutions contain first-order, second-order, and third-order wave solutions were analyzed62.

A precise balance between the nonlinear and dispersion elements in the evolution system gives rise to the solitons, a typical nonlinear phenomenon. The soliton theory has a wide range of useful applications. For instance, optical soliton has unquestionably produced the basis for optical fibre communication and the current Internet era. Two and more solitons coexist and interact often in an evolution system. With the exception of phase, solitons interact and clash most frequently in an elastic manner, preserving their propagation speed, amplitude, and direction. Solitons may collide inelastically in some settings. Even in extremely uncommon situations, soliton fusion and fission can occur6365.

The primary goal of this research is to offer generalized breaking soliton system in (3 + 1)-dimensions arising in wave propagation a significant number of trustworthy analytical closed-form solutions. Additionally, wave designs from distinctive soliton solutions’ nonlinear behavior in 3D, 2D, and stage plane examination has been appeared. The express methods’ versatile profile structures are very unmistakable and supportive for basic forms. Only a very small number of findings from previous research have been released, and the resulting periodic and single soliton compositions are entirely original. Furthermore, this research could be seen as a complement to previous relevant articles.

For reasons known to all, the researchers of shallow water wave in various field is critical for further study in physical systems when we turn to mathematical physics, nonlinear optics, optical fibres and communication engineering in which the nonlinear evolution equation was recently developed. Feng et al.66 obtained the exact analytical solutions and novel interaction solutions by Hirota bilinear method and symbolic computation. Ma et al.67 obtained the localized interaction solutions based on a Hirota bilinear transformation. The multi-component Sasa-Satsuma integrable hierarchies was studied via an arbitrary-order matrix spectral problem, based on the zero curvature formulation68. Analytical one-, two-, three- and four-soliton solutions of the (2 + 1)-dimensional variable-coefficient Sawada-Kotera equation were constructed based on its Hirota bilinear form69. A fourth-order time-fractional partial differential equation with Riemann–Liouville definition was studied using the general method of separation of variables70.

Although solitons theoretically possess unique properties that allow them to maintain their propagation shape, speed, and amplitude, in practical application scenarios, the propagation of solitons is often influenced by various complex factors such as common damping, initial or boundary perturbations, evolving dissipation, and variable nonlinearity71. These factors directly affect the soliton dynamics, leading to energy loss, amplitude attenuation, deformation, and deceleration during propagation. To address these issues, it is necessary to introduce certain physical factors mentioned above in nonlinear evolution systems, such as the multimodal vision-language learning paradigm method72, a complete language-vision interaction network73, the multimodal hybrid parallel network method74, a multi-scale channel-spatial attention75, Fourier decomposition method76.

In this paper, we will discuss the following generalized breaking soliton system in (3 + 1)-dimensions77

vt+s1uxxx+s2uxxy+s3uxxz+s4uux+s5uuy+s6uuz+s7uxw=0,vx=ux+uy-uxxdt,w=(uy+uz)dx, 1

with u=u(t,x,y,z),v=v(t,x,y,z) and w=w(t,x,y,z) and sj(j=1,2,,7) are free parameters. System (1) is derived from the generalization of the following (2 + 1)-dimensional generalized breaking soliton system

ut+s1uxxx+s2uxxy+s3uux+s4uuy+s5uxw=0,w=uydx, 2

where u=u(t,x,y) and w=w(t,x,y) and sj(j=1,2,,5) are the nonzero parameters. System (2) is investigated by different methods in Refs.7880. Using s4=6s1=δ,s2=s3=s,s5=s6=s7=3s and the following relation

u(x,y,z,t)=2(lnT(x,y,z,t))xx, 3

then, the bilinear form B(T) of Eq. (1) will be arisen as

B(T):=δDx4+sDx3Dy+sDx3Dz+DxDt+DyDt-Dx2T.T=0, 4

with the bilinear operator D

i=14Dςiif.g=i=14ςi-ςiβif(ς)g(ς)ς=ς, 5

in which ς=(x,y,z,t) and ς=(x,y,z,t). Hence, we get

B(T)=2δ(TTxxxx-4TxTxxx+3Txx2)+2s(Txxxy-TyTxxx-3TxTxxy+3TxxTxy+Txxxz-TzTxxx- 6
3TxTxxz+3TxxTxz)+2(TTxt-TxTt)+2(TTyt-TyTt)-2(TTxx-Tx2).

The (2 + 1)-dimensional Zoomeron model extensively was utilized the extended Jacobian elliptic function and the modified extended tanh techniques to derive the analytical solutions87. The improved Kudryashov, the novel Kudryashov, and the unified methods were used to demonstrate new wave behaviors of the Fokas–Lenells nonlinear waveform arising in birefringent fibers88. The linear stability technique and bifurcation analysis were employed to assess the stability of the fractional 3D Wazwaz–Benjamin–Bona–Mahony model89. The novel waveforms and bifurcation analysis for the fractional Klein–Fock–Gordon structure were investigated in90. N-solitons and interaction solution for the (3 + 1)-D negative-order KdV first structure that arises in shallow-water waves were studied91. The Hirota bilinear formation was used to analyze novel collision solutions between the lump and kinky waves of the (3 + 1)-D Jimbo–Miwa-like model92.

In essence, the generalized breaking soliton system characterizes the propagation of nonlinear dispersive waves within (3 + 1)-dimensions, embodying a balance between nonlinear convection effects and dispersive tendencies originating from the medium.

The structure of this paper is given as under:

The double-periodic soliton method is presented in the second section by plenty of the solutions. Application of breather wave is discussed in the third section. The result and discussion are investigated in fourth section. Fifth section points to the multiple rogue wave and its application on mentioned system. Finally, we approach some kind of results and conclusion in sixth section.

Double-periodic soliton solutions

Recently, “three-wave method” was revised for obtaining the double-periodic soliton solutions to NLPDEs81, such as the (2 + 1)- and (3 + 1)-dimensional BLMP equation82, the (2 + 1)-dimensional breaking soliton equation83, the new (2 + 1)-dimensional KdV equation84. Following the steps of this method, T(xyt) has a solution of the following form

T(x,y,z,t)=k1eα1x+β1y+λ1z+μ1t+ϵ1+k2eα4x+β4y+λ4z+μ4t+ϵ4+ 7
eα1x+β1y+λ1z+μ1t+ϵ1[m1cos(α2x+β2y+λ2z+μ2t+ϵ2)+m2sin(α2x+β2y+λ2z+μ2t+ϵ2)]+eα3x+β3y+λ3z+μ3t+ϵ3[m3cos(α4x+β4y+λ4z+μ4t+ϵ4)+m4sin(α4x+β4y+λ4z+μ4t+ϵ4)],

where αi,βi,λi,μi and ϵi(i=1,2,3,4) are constants to be determined later. The assumptions used in the “three-wave method” are special cases of Eq. (7). Substituting Eq. (7) into Eq. (3), a set of algebraic equations about αi,βi,λi,μi and ϵi(i=1,2,3,4) are obtained. With the aid of Mathematica software, we have the following results:

Case (1):

α3=α4=k1=k2=m1=μ3=μ4=0,T(x,y,z,t)=etμ1+xα1+yβ1+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+eyβ3+zλ3+ϵ3m3cosyβ4+zλ4+ϵ4+m4sinyβ4+zλ4+ϵ4,u(x,y,z,t)=22x2Tx,y,z,tTx,y,z,t-2xTx,y,z,t2Tx,y,z,t2,Tx(x,y,z,t)=α1etμ1+xα1+yβ1+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+etμ1+xα1+yβ1+zλ1+ϵ1m2costμ2+xα2+yβ2+zλ2+ϵ2α2,Txx(x,y,z,t)=etμ1+xα1+yβ1+zλ1+ϵ1m2(sintμ2+xα2+yβ2+zλ2+ϵ2α12-sintμ2+xα2+yβ2+zλ2+ϵ2α22+2costμ2+xα2+yβ2+zλ2+ϵ2α1α2). 8

Case (2):

α4=k1=m1=μ4=0,μ3=-sα33β4+λ4β4,δ=sα32β4+sα32λ4+sα3β3λ4-sα3λ3β4+β4α32β4,T(x,y,z,t)=k2eyβ4+zλ4+ϵ4+etμ1+xα1+yβ1+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+e-tsα33β4+λ4β4+xα3+yβ3+zλ3+ϵ3m3cosyβ4+zλ4+ϵ4+m4sinyβ4+zλ4+ϵ4. 9

Case (3):

α4=β4=k1=m1=0,β3=-α3sα32λ4+μ4μ4,δ=s2α34λ4+sα32μ4-sα3λ3μ4+sα3λ4μ3+μ4α32μ4,T(x,y,z,t)=k2etμ4+zλ4+ϵ4+etμ1+xα1+yβ1+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+etμ3+xα3-yα3sα32λ4+μ4μ4+zλ3+ϵ3m3costμ4+zλ4+ϵ4+m4sintμ4+zλ4+ϵ4. 10

Case (4):

α4=k2=m1=μ4=0,λ1=--sα1-α3β4+λ4α1-α3+β1-β3λ4+β4λ3+β4-1+α1-α32δα1-α3sβ4,μ1=-sα1-α33β4+λ4-β4μ3β4,T(x,y,z,t)=k1e-tsα1-α33β4+λ4-β4μ3β4+xα1+yβ1+zλ1+ϵ1+e-tsα1-α33β4+λ4-β4μ3β4+xα1+yβ1+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+etμ3+xα3+yβ3+zλ3+ϵ3m3cosyβ4+zλ4+ϵ4+m4sinyβ4+zλ4+ϵ4. 11

Case (5):

α4=β4=k2=m1=0,β1=-sλ4α1-α33+μ4α1-α3-β3μ4,λ1=--sα1-α3sλ4α1-α33+μ4α1-α3+λ3+λ4μ1-μ3+μ4-1+α1-α32δα1-α3sμ4,T(x,y,z,t)=k1etμ1+xα1-ysλ4α1-α33+μ4α1-α3-β3μ4+zλ1+ϵ1+etμ1+xα1-ysλ4α1-α33+μ4α1-α3-β3μ4+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+etμ3+xα3+yβ3+zλ3+ϵ3m3costμ4+zλ4+ϵ4+m4sintμ4+zλ4+ϵ4. 12

Case (6):

k2=m1=0,δ=-1124s3λ4-3α1+3α3α1-α3+1α12-2α1α3+α32,μ1=-138s3λ4-3α1+3α3-3β1+3β3-3λ1+3λ3α1-α33+8α1-α32-3μ3β1-β3+α1-α3β1-β3+α1-α3,T(x,y,z,t)=k1etμ1+xα1+yβ1+zλ1+ϵ1+etμ1+xα1+yβ1+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+etμ3+xα3+yβ3+zλ3+ϵ3m3cos43tα12-2α1α3+α323β1-β3+α1-α3+x3α1-α3-y3α1-α3+zλ4+ϵ4+m4sin43tα12-2α1α3+α323β1-β3+α1-α3+x3α1-α3-y3α1-α3+zλ4+ϵ4. 13

Case (7):

m1=m4=0,λ1=-δα1-α44+sα1-α43β1-β4-λ4-α1-α4α1-α4-μ1+μ4+μ1-μ4β1-β4sα1-α43,T(x,y,z,t)=k1etμ1+xα1+yβ1+zλ1+ϵ1+k2etμ4+xα4+yβ4+zλ4+ϵ4+etμ1+xα1+yβ1+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+etμ3+xα3+yβ3+zλ3+ϵ3m3costμ4+xα4+yβ4+zλ4+ϵ4. 14

Case (8):

k1=m1=0,δ=-1163-3-8sα43β3+λ3+2α423+3α4μ33+33β3μ3-6α42+3α4μ3α44,λ4=-1168s3β3+λ33-2α4-3β3-3λ3α43+433-5α42-333β3-2α4-3β3μ3sα43,α3=1/33+3α4,μ4=-4/33-1α423β3-2α4-3β3,T(x,y,z,t)=k2e-4/3t3-1α42β33-2α4-3β3+xα4-yα4+zλ4+ϵ4+etμ1+xα1+yβ1+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+etμ3+1/3x3+3α4+yβ3+zλ3+ϵ3m3cos-4/3t3-1α42β33-2α4-3β3+xα4-yα4+zλ4+ϵ4+m4sin-4/3t3-1α42β33-2α4-3β3+xα4-yα4+zλ4+ϵ4,u(x,y,z,t)=2(ln(T(x,y,z,t))xx. 15

Case (9):

k1=m1=μ3=μ4=0,δ=-144sα4β4+4sα4λ4+1α42,α3=1+3α4,λ3=121+32sα4β4+2sα4λ4+1-2sα4β3-1sα4,T(x,y,z,t)=k2exα4+yβ4+zλ4+ϵ4+etμ1+xα1+yβ1+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+ex1+3α4+yβ3+zλ3+ϵ3m3cosxα4+yβ4+zλ4+ϵ4+m4sinxα4+yβ4+zλ4+ϵ4. 16

Case (10):

α3=α4=k1=m1=μ3=μ4=0,λ3=β3λ4β4,μ1=-sα13β4+λ4β4,δ=α12β4s+α12λ4s+α1β1λ4s-sα1β4λ1+β4α12β4,T(x,y,z,t)=k1e-tsα13β4+λ4β4+xα1+yβ1+zλ1+ϵ1+k2eyβ4+zλ4+ϵ4+e-tsα13β4+λ4β4+xα1+yβ1+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+eyβ3+zβ3λ4β4+ϵ3m3cosyβ4+zλ4+ϵ4+m4sinyβ4+zλ4+ϵ4. 17

Case (11):

α4=m1=μ4=0,δ=α32β4s+α32λ4s+α3β3λ4s-α3β4λ3s+β4α32β4,β1=-133sα32α1-α32α1-β4β4+λ4+α1β4α12-α1α3+α32α1-α32β4+λ4sα32,λ1=-133sα3α1-α32β4+λ4M1+α1β4M2α1-α32β4+λ4sα32β4,M1=α3λ4α1-β4+α1β3λ4-β4λ3,M2=α123β4+4λ4-α1α39β4+10λ4+α326β4+7λ4,μ1=-sα1α12β4+α12λ4-3α1α3β4-3α1α3λ4+3α32β4+3α32λ4β4,μ3=-sα33β4+λ4β4,T(x,y,z,t)=k1etμ1+xα1+yβ1+zλ1+ϵ1+k2eyβ4+zλ4+ϵ4+etμ1+xα1+yβ1+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+e-tsα33β4+λ4β4+xα3+yβ3+zλ3+ϵ3m3cosyβ4+zλ4+ϵ4+m4sinyβ4+zλ4+ϵ4. 18

Case (12):

α4=m1=μ4=0,δ=α32β4s+α32λ4s+α3β3λ4s-α3β4λ3s+β4α32β4,λ1=β1λ4-β3λ4+β4λ3β4,μ1=-sα33β4+λ4β4,μ3=-sα33β4+λ4β4,T(x,y,z,t)=k1e-tsα33β4+λ4β4+xα3+yβ1+zβ1λ4-β3λ4+β4λ3β4+ϵ1+k2eyβ4+zλ4+ϵ4+e-tsα33β4+λ4β4+xα3+yβ1+zβ1λ4-β3λ4+β4λ3β4+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+e-tsα33β4+λ4β4+xα3+yβ3+zλ3+ϵ3m3cosyβ4+zλ4+ϵ4+m4sinyβ4+zλ4+ϵ4. 19

Case (13):

α3=α4=β3=β4=m1=0,δ=α14λ4s2+α12μ4s-sα1λ1μ4+α1λ4μ1s+μ4α12μ4,β1=-α1α12λ4s+μ4μ4,λ3=λ4μ3μ4,T(x,y,z,t)=k1etμ1+xα1-yα1α12λ4s+μ4μ4+zλ1+ϵ1+k2etμ4+zλ4+ϵ4+etμ1+xα1-yα1α12λ4s+μ4μ4+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+etμ3+zλ4μ3μ4+ϵ3m3costμ4+zλ4+ϵ4+m4sintμ4+zλ4+ϵ4. 20

Case (14):

α1=α4=β1=β4=m1=0,δ=α34λ4s2+α32μ4s-α3λ3μ4s+α3λ4μ3s+μ4α32μ4,β3=-α3α32λ4s+μ4μ4,λ1=λ4μ1μ4,T(x,y,z,t)=k1etμ1+zλ4μ1μ4+ϵ1+k2etμ4+zλ4+ϵ4+etμ1+zλ4μ1μ4+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+etμ3+xα3-yα3α32λ4s+μ4μ4+zλ3+ϵ3m3costμ4+zλ4+ϵ4+m4sintμ4+zλ4+ϵ4. 21

Case (15):

α4=β4=m1=0,δ=133sα32α1-α32sα1λ4α12-3α1α3+3α32+μ4α1-λ1+λ4-α1μ4α1-2α32α1α32μ4α1-α32,β1=-α1sλ4α12-3α1α3+3α32+μ4μ4,β3=-α3α32λ4s+μ4μ4,μ1=13μ43α32λ4sα1-α32-α13+α12α3-α1α32α32λ4sα1-α32,λ3=-133sα3α1-α32α1α3λ4sα1-α3α1-2α3-α1λ4μ3-α3μ4λ1-λ4-α1μ44α12-10α1α3+7α32α1α1-α32sα3μ4,T(x,y,z,t)=k1etμ1+xα1+yβ1+zλ1+ϵ1+k2etμ4+zλ4+ϵ4+etμ1+xα1+yβ1+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+etμ3+xα3-yα3α32λ4s+μ4μ4+zλ3+ϵ3m3costμ4+zλ4+ϵ4+m4sintμ4+zλ4+ϵ4. 22

Case (16):

α4=β4=m1=0,δ=α34λ4s2+α32μ4s-sα3λ1μ4+α3λ4μ1s+μ4α32μ4,β1=-α3α32λ4s+μ4μ4,β3=-α3α32λ4s+μ4μ4,λ3=λ1μ4-λ4μ1+λ4μ3μ4,T(x,y,z,t)=k1etμ1+xα3-yα3α32λ4s+μ4μ4+zλ1+ϵ1+k2etμ4+zλ4+ϵ4+etμ1+xα3-yα3α32λ4s+μ4μ4+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+etμ3+xα3-yα3α32λ4s+μ4μ4+zλ1μ4-λ4μ1+λ4μ3μ4+ϵ3m3costμ4+zλ4+ϵ4+m4sintμ4+zλ4+ϵ4. 23

Case (17):

α3=1,α1=β1=μ3=α4=β4=2,μ1=μ4=3,β3=319124,δ=-12sλ4-s+18,λ3=--992sλ4+3120s-17041984s,T(x,y,z,t)=k1ezλ4+3t+2x+2y+ϵ1+k2etμ4+xα4+yβ4+zλ4+ϵ4+ezλ4+3t+2x+2y+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+etμ3+xα3+319y124-z-992sλ4+3120s-17041984s+ϵ3×m3costμ4+xα4+yβ4+zλ4+ϵ4+m4sintμ4+xα4+yβ4+zλ4+ϵ4. 24

Case (18):

α3=1,α1=β1=μ3=α4=β3=2,μ1=μ4=β1=3,β4=-406225,μ3=-272,δ=-12sλ4+203s225-475,λ1=--450sλ4+2162s-3243450s,λ3=--225sλ4+1306s-1779450s,T(x,y,z,t)=k1e3t+2x+yβ1-z-450sλ4+2162s-3243450s+ϵ1+k2etμ4+xα4+zλ4-406y225+ϵ4+e3t+2x+yβ1-z-450sλ4+2162s-3243450s+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+e-27t2+xα3+yβ3-z-225sλ4+1306s-1779450s+ϵ3×m3costμ4+xα4+zλ4-406y225+ϵ4+m4sintμ4+xα4+zλ4-406y225+ϵ4. 25

Case (19):

α1=m1=0,δ=144sα42-4sα4λ4-1α42,β1=124M1M2μ4α35+α34α4-5α33α42+7α32α43-2α452α3-α4,β3=112-24α32α4μ4+12α3α42μ4+M1α4μ42α3-α4,λ1=-124sα43α32-α42M2M1+μ4M3α4μ4α35+α34α4-5α33α42+7α32α43-2α452α3-α43α32-α42s,λ3=-112sα4-24α32λ4μ4+12α3α4λ4μ4+M1+μ43α32+12α3α4-13α42sα42μ42α3-α4,μ1=3α32-2α42μ43α32-α42,μ3=μ49α35+9α34α4-79α33α42+60α32α43+6α3α44-16α45α4M1,T(x,y,z,t)=k1et3α32-2α42μ43α32-α42+yβ1+zλ1+ϵ1+k2etμ4+xα4-yα4+zλ4+ϵ4+et3α32-2α42μ43α32-α42+yβ1+zλ1+ϵ1m2sintμ2+xα2+yβ2+zλ2+ϵ2+etμ3+xα3+yβ3+zλ3+ϵ3m3costμ4+xα4-yα4+zλ4+ϵ4+m4sintμ4+xα4-yα4+zλ4+ϵ4,u(x,y,z,t)=2Txxx,y,z,t/Tx,y,z,t-2Txx,y,z,t/Tx,y,z,t2. 26

Interpretation of results for double-periodic soliton

In this section, we discuss the dynamic properties by setting some special values for the free parameters in these solutions. For example, substituting

α1=α3=β3=m2=μ1=λ3=μ3=k1=ϵ1=ϵ3=1,α2=β1=λ2=ϵ4=1/4,α4=β2=μ4=ϵ2=1/3, 27
β4=μ2=1/2,λ4=1/5,m3=δ=k2=2,s=3,

into Eq. (14), we can obtain the following double-periodic soliton solution

T(x,y,z,t)=et+x+y/4+139z720+1+2et/3+x/3+y/2+z/5+1/4+et+x+y/4+139z720+1sint/2+x/4+y/3+z/4+1/3+2et+x+y+z+1cost/3+x/3+y/2+z/5+1/4,u(x,y,z,t)=22x2Tx,y,z,tTx,y,z,t-2xTx,y,z,t2Tx,y,z,t2. 28

The dynamic properties to Eq. (28) are described in Figs. 1. Figure 1 shows the interaction between two periodic soliton solutions for specified values of z=t=1,y=t=1,x=t=1,x=y=1,z=1,y=-1,x=z=1,y=-1,z=1,t=2,z=-2,x=z=-3, respectively.

Fig. 1.

Fig. 1

Double-periodic soliton (28) with different parameters of Case (7) z=t=1,y=t=1,x=t=1,x=y=1,z=1,y=-1,x=z=1,y=-1,z=1,t=2,z=-2,x=z=-3, respectively.

By substituting below

α1=β3=λ3=m2=m4=k1=ϵ1=ϵ3=1,α2=λ2=ϵ4=1/4,α4=β2=μ4=ϵ2=1/3, 29
β4=1/2,λ4=1/5,α3=m3=δ=k2=2,s=3,

into Eq. (18), we can obtain the following double-periodic soliton solution

T(x,y,z,t)=e-147t5+x-47y84-73z420+1+2ey/2+z/5+1/4+e-147t5+x-47y84-73z420+1sin2t+x/4+y/3+z/4+1/3+e-168t5+2x+y+z+12cosy/2+z/5+1/4+siny/2+z/5+1/4,u(x,y,z,t)=22x2Tx,y,z,tTx,y,z,t-2xTx,y,z,t2Tx,y,z,t2. 30

The dynamic properties to Eq. (30) are described in Fig. 2. Figure 2 shows the interaction between two periodic soliton solutions for specified values of z=t=1,y=t=1,x=t=1,x=z=1,x=y=1,y=z=-2,x=2,z=-2,t=2,z=-2,x=-4,t=1/2, respectively.

Fig. 2.

Fig. 2

Double-periodic soliton (30) with different parameters of Case (7) z=t=1,y=t=1,x=t=1,x=z=1,x=y=1,y=z=-2,x=2,z=-2,t=2,z=-2,x=-4,t=1/2, respectively.

By putting below

α3=β2=λ2=m2=μ2=ϵ1=ϵ2=ϵ3=ϵ4=s=1,α2=m3=μ4=k2=2,α4=k1=3,λ4=m4=-1, 31

into Eq. (26), we can obtain the following double-periodic soliton solution

T(x,y,z,t)=3e5t-3/2y+11z12+1+2e2t+3x-3y-z+1+e5t-3/2y+11z12+1sint+2x+y+z+1+e-21t+x-25y12+z/36+12cos2t+3x-3y-z+1-sin2t+3x-3y-z+1,u(x,y,z,t)=22x2Tx,y,z,tTx,y,z,t-2xTx,y,z,t2Tx,y,z,t2. 32

The dynamic properties to Eq. (32) are described in Figs. 3, 4 and 5. Figures 3, 4 and 5 show the interaction between two periodic soliton solutions for specified values of parameters including Fig. 3 the first row z=t=1, the second row y=t=1 and the third row x=t=1 and including Fig. 4 the first row z=-2,t=2, the second row y=-2,t=2 and the third row x=-2,t=2 and also Fig. 5 the first row y=-1/2,z=1/3, the second row x=1/4,z=1/5 and the third row x=1/6,y=1/5.

Fig. 3.

Fig. 3

Double-periodic soliton (30) with different parameters of (The first row): Case (19) z=t=1, (The second row): Case (19) y=t=1 and (The third row): Case (19) x=t=1.

Fig. 4.

Fig. 4

Double-periodic soliton (30) with different parameters of (The first row): Case (19) z=-2,t=2, (The second row): Case (19) y=-2,t=2 and (The third row): Case (19) x=-2,t=2.

Fig. 5.

Fig. 5

Double-periodic soliton (30) with different parameters of (The first row): Case (19) y=-1/2,z=1/3, (The second row): Case (19) x=1/4,z=1/5 and (The third row): Case (19) x=1/6,y=1/5.

Breather wave solutions

According to Three-wave method is used for obtaining the Breather wave solutions by following the steps of this method, T(xyzt) has a solution of the following form

T(x,y,z,t)=e-(α1x+β1y+λ1z+μ1t+ϵ1)+k1eα1x+β1y+λ1z+μ1t+ϵ1 33
+k2cos(α2x+β2y+λ2z+μ2t+ϵ2)+k3sin(α3x+β3y+λ3z+μ3t+ϵ3),

where αi,βi,λi,μi and ϵi(i=1,2,3) are constants to be determined later. The assumptions used in the “Three-wave method” are special cases of Eq. (33). Substituting Eq. (33) into Eq. (3), a set of algebraic equations about αi,βi,λi,μi and ϵi(i=1,2,3) are obtained. With the aid of Mathematica software, we have the following results:

Case (1):

α3=k2=0,β1=112-β3k32μ3+4k13α12-3α1μ1+4β3μ3k1μ1,λ1=-112sα13-β3k32μ3+12α12k1-12α1k1μ1+16β3k1μ3+μ112δα14k1-β3k32μ3+4β3k1μ3k1μ1sα13,λ3=-11212sα13β3k1μ1-β3k32μ32+12α12k1μ3+12β3k1μ12+16β3k1μ32k1μ1sα13,T(x,y,z,t)=e-tμ1-xα1-yβ1-zλ1-ϵ1+k1etμ1+xα1+yβ1+zλ1+ϵ1+k3sintμ3+yβ3+zλ3+ϵ3,u(x,y,z,t)=2α12e-tμ1-xα1-yβ1-zλ1-ϵ1+k1α12etμ1+xα1+yβ1+zλ1+ϵ1e-tμ1-xα1-yβ1-zλ1-ϵ1+k1etμ1+xα1+yβ1+zλ1+ϵ1+k3sintμ3+yβ3+zλ3+ϵ3-2-α1e-tμ1-xα1-yβ1-zλ1-ϵ1+k1α1etμ1+xα1+yβ1+zλ1+ϵ12e-tμ1-xα1-yβ1-zλ1-ϵ1+k1etμ1+xα1+yβ1+zλ1+ϵ1+k3sintμ3+yβ3+zλ3+ϵ32. 34

Case (2):

α3=μ3=k1=k2=0,μ1=-γα13β3+λ3β3,λ1=-δα12β3+γα12β3+γα12λ3+γα1β1λ3+β3γα1β3,T(x,y,z,t)=etγα13β3+λ3β3-xα1-yβ1-z-δα12β3+γα12β3+γα12λ3+γα1β1λ3+β3γα1β3-ϵ1+k3sinyβ3+zλ3+ϵ3,u(x,y,z,t)=2α12etγα13β3+λ3β3-xα1-yβ1-z-δα12β3+γα12β3+γα12λ3+γα1β1λ3+β3γα1β3-ϵ1T(x,y,z,t)-2α12etγα13β3+λ3β3-xα1-yβ1-z-δα12β3+γα12β3+γα12λ3+γα1β1λ3+β3γα1β3-ϵ12T2(x,y,z,t). 35

Case (3):

α1=k2=μ3=0,λ3=-γ2α36β1+γ2α36λ1+δα34μ1-γα34μ1+α32μ1+β1μ12μ1γα33,β3=α3γα32β1+γα32λ1-μ1μ1,k1=14k323α32+4β1μ1β1μ1,T(x,y,z,t)=e-tμ1-yβ1-zλ1-ϵ1+14k323α32+4β1μ1etμ1+yβ1+zλ1+ϵ1β1μ1+k3sinxα3+yβ3+zλ3+ϵ3,u(x,y,z,t)=2Txxx,y,z,t/Tx,y,z,t-2Txx,y,z,t/Tx,y,z,t2. 36

Case (4):

k2=μ1=μ3=0,β1=-δα13+δα1α32+γα12λ1+γα32λ1-α1α12+α32γ,k1=-14α32k32α12-3α32α123α12-α32,λ3=-δα12α3+δα33+γα12β3+γα32β3+α3α12+α32γ,T(x,y,z,t)=e-xα1-yβ1-zλ1-ϵ1-1/4α32k32α12-3α32exα1+yβ1+zλ1+ϵ1α123α12-α32+k3sinxα3+yβ3+zλ3+ϵ3,u(x,y,z,t)=2Txxx,y,z,t/Tx,y,z,t-2Txx,y,z,t/Tx,y,z,t2. 37

Case (5):

k1=k2=0,β3=13α3α1α12-3α322-3μ1α12+α322μ1α12+α322,λ1=-α1α12-3α32α12+α32δα1+γβ1-α12α12-3α32+μ1α12+α32α1+β1γα1α12-3α32α12+α32,λ3=-13-3μ1α12+α322γ-δ+γα1-α12+3α322α3γμ1α12+α322,T(x,y,z,t)=e-tμ1-xα1-yβ1-zλ1-ϵ1+k3sintα3μ13α12-α32α1α12-3α32+xα3+yβ3+zλ3+ϵ3,u(x,y,z,t)=2α12e-tμ1-xα1-yβ1-zλ1-ϵ1-2k3sintα3μ13α12-α32α1α12-3α32+xα3+yβ3+zλ3+ϵ3α32T(x,y,z,t)+2-α1e-tμ1-xα1-yβ1-zλ1-ϵ1+k3costα3μ13α12-α32α1α12-3α32+xα3+yβ3+zλ3+ϵ3α32T2(x,y,z,t). 38

Case (6):

k1=k2=0,α1=α33,M1=10α32+16α3β3+9β12+9β32,M2=2α32-2α3μ3+β3μ3,λ1=-181338δα34α3+β3-2α325α3+3β3+μ3M1+8γα33β1α3+β3-2β1M2γα33α3+β3,λ3=-144δα34+4γα33β3+α32-α3μ3-β3μ3γα33,μ1=131α3+β34α32-α3μ3+2β3μ33-3β1μ3,T(x,y,z,t)=e-1/3t1/334α32-α3μ3+2β3μ3-3β1μ3α3+β3-1/3x3α3-yβ1-zλ1-ϵ1+k3sintμ3+xα3+yβ3+zλ3+ϵ3,u(x,y,z,t)=2/3α32e-1/3t1/334α32-α3μ3+2β3μ3-3β1μ3α3+β3-1/3x3α3-yβ1-zλ1-ϵ1-2k3sintμ3+xα3+yβ3+zλ3+ϵ3α32T(x,y,z,t)-2-1/33α3e-1/3t1/334α32-α3μ3+2β3μ3-3β1μ3α3+β3-1/3x3α3-yβ1-zλ1-ϵ1+k3costμ3+xα3+yβ3+zλ3+ϵ3α32T2(x,y,z,t). 39

Case (7):

k1=k2=0,λ1=-188δα14+8γα13β1-2α12-α1μ1-β1μ1γα13,λ3=112-12δα12+12γα12-13α1γ,μ3=43α123α1+β1,T(x,y,z,t)=e-tμ1-xα1-yβ1-zλ1-ϵ1+k3sin4/3tα123α1+β1+x3α1-y3α1+zλ3+ϵ3,u(x,y,z,t)=2α12e-tμ1-xα1-yβ1-zλ1-ϵ1-6k3sin4/3tα123α1+β1+x3α1-y3α1+zλ3+ϵ3α12T(x,y,z,t)-2-α1e-tμ1-xα1-yβ1-zλ1-ϵ1+k3cos4/3tα123α1+β1+x3α1-y3α1+zλ3+ϵ33α12T2(x,y,z,t). 40

Case (8):

α2=k3=0,β1=112-β2k22μ2+4k13α12-3α1μ1+4β2μ2k1μ1,λ1=-112-γα13β2k22μ2+12δα14k1μ1+12γα15k1-12γα14k1μ1+16γα13β2k1μ2-β2k22μ1μ2+4β2k1μ1μ2k1μ1γα13,λ2=-11212γα13β2k1μ1-β2k22μ22+12α12k1μ2+12β2k1μ12+16β2k1μ22k1μ1γα13,T(x,y,z,t)=e-tμ1-xα1-yβ1-zλ1-ϵ1+k1etμ1+xα1+yβ1+zλ1+ϵ1+k2costμ2+yβ2+zλ2+ϵ2,u(x,y,z,t)=2α12e-tμ1-xα1-yβ1-zλ1-ϵ1+2k1α12etμ1+xα1+yβ1+zλ1+ϵ1T(x,y,z,t)-2-α1e-tμ1-xα1-yβ1-zλ1-ϵ1+k1α1etμ1+xα1+yβ1+zλ1+ϵ12T2(x,y,z,t). 41

Case (9):

α1=k3=μ2=0,β2=α2γα22β1+γα22λ1-μ1μ1,k1=14k223α22+4β1μ1β1μ1,λ2=-γ2α26β1+γ2α26λ1+δα24μ1-γα24μ1+α22μ1+β1μ12μ1γα23,T(x,y,z,t)=e-tμ1-yβ1-zλ1-ϵ1+k1etμ1+yβ1+zλ1+ϵ1+k2cosxα2+yβ2+zλ2+ϵ2,u(x,y,z,t)=-2k2cosxα2+yβ2+zλ2+ϵ2α22e-tμ1-yβ1-zλ1-ϵ1+k1etμ1+yβ1+zλ1+ϵ1+k2cosxα2+yβ2+zλ2+ϵ2-2k22sinxα2+yβ2+zλ2+ϵ22α22e-tμ1-yβ1-zλ1-ϵ1+k1etμ1+yβ1+zλ1+ϵ1+k2cosxα2+yβ2+zλ2+ϵ22. 42

Case (10):

μ2=k3=0,α1=-β1,β2=γα22+β123β1+λ1-δβ1α22+β123+M1α2α22-3β12μ1,k1=-14α22k223α22-β12β12α22-3β12,M1=α24β1-α24μ1+2α22β13+3α22β12μ1+β15,M2=δα24-6δα22β12+δβ14+α22-β12,λ2=-γ2α22+β123β1+λ1-γβ1δα22+β123+γM1+β1μ13α22-β12β1+λ1+μ1M2α2α22-3β12μ1γ,T(x,y,z,t)=e-tμ1+xβ1-yβ1-zλ1-ϵ1+k1etμ1-xβ1+yβ1+zλ1+ϵ1+k2cosxα2+yβ2+zλ2+ϵ2,u(x,y,z,t)=2β12e-tμ1+xβ1-yβ1-zλ1-ϵ1+2k1β12etμ1-xβ1+yβ1+zλ1+ϵ1-2k2cosxα2+yβ2+zλ2+ϵ2α22T(x,y,z,t)-2β1e-tμ1+xβ1-yβ1-zλ1-ϵ1-k1β1etμ1-xβ1+yβ1+zλ1+ϵ1-k2sinxα2+yβ2+zλ2+ϵ2α22T2(x,y,z,t). 43

Case (11):

T(x,y,z,t)=e-tμ1-xα1-yβ1+1/8z8δα14+8γα13β1-2α12-α1μ1-β1μ1γα13-ϵ1+k2cos43tα123α1+β1+x3α1-y3α1+112z-12δα12+12γα12-13γα1+ϵ2. 44

Case (12):

T(x,y,z,t)=e-tμ1-zμ1sα3μ3-ϵ1+k2costμ2+zμ2sα3μ3+ϵ2+k3sintμ3+xα3+yα3α3-μ3μ3-zα3δμ3+sα3-sμ3sμ3+ϵ3. 45

Case (13):

T(x,y,z,t)=e-yβ1+zβ1sα33-μ3sα33-ϵ1+k2cosyβ2-zβ2sα33-μ3sα33+ϵ2+k3sintμ3+xα3+yα3α3-μ3μ3-zα3δμ3+sα3-sμ3sμ3+ϵ3. 46

Case (14):

T(x,y,z,t)=e-tμ1-xα1-yβ1+zδα14+sα13β1-α12+α1μ1+β1μ1sα13-ϵ1+k2cosyβ2-zβ2sα13+μ1sα13+ϵ2+k3sinyβ3-zβ3sα13+μ1sα13+ϵ3. 47

Case (15):

α1=α3=β1=β3=0,β2=α2α2-μ2μ2,λ1=μ1α2μ2γ,λ2=-α2δμ2+γα2-γμ2γμ2,λ3=μ3α2μ2γ,T(x,y,z,t)=e-tμ1-zμ1α2μ2γ-ϵ1+k1etμ1+zμ1α2μ2γ+ϵ1+k2costμ2+xα2+yα2α2-μ2μ2-zα2δμ2+γα2-γμ2γμ2+ϵ2+k3sintμ3+zμ3α2μ2γ+ϵ3,u(x,y,z,t)=2Txxx,y,z,t/Tx,y,z,t-2Txx,y,z,t/Tx,y,z,t2. 48

Case (16):

T(x,y,z,t)=e-yβ1+zβ1sα23-μ2sα23-ϵ1+k1eyβ1-zβ1sα23-μ2sα23+ϵ1+k2costμ2+xα2+yα2α2-μ2μ2-zα2δμ2+sα2-sμ2sμ2+ϵ2+k3sinyβ3-zβ3sα23-μ2sα23+ϵ3,u(x,y,z,t)=2Txxx,y,z,t/Tx,y,z,t-2Txx,y,z,t/Tx,y,z,t2. 49

Case (17):

α3=μ3=0,β1=13α12α2-3α12μ2-2α23α1μ2,β2=1/3α22α12α2-3α12μ2-α23α12μ2,λ1=-133δα12α22μ2+sα12α23-3sα12α22μ2-2sα25-α12μ2-α22μ2α1α22μ2s,λ2=-133δα12α22μ2+sα222α12α2-3α12μ2-α23+α12μ2+α22μ2sα2α12μ2,T(x,y,z,t)=etα13μ2α23-xα1-yβ1-zλ1-ϵ1+14α24k22α14e-tα13μ2α23+xα1+yβ1+zλ1+ϵ1+k2costμ2+xα2+yβ2+zλ2+ϵ2+k3sinyβ3-zβ3sα23-μ2sα23+ϵ3,u(x,y,z,t)=2Txxx,y,z,t/Tx,y,z,t-2Txx,y,z,t/Tx,y,z,t2. 50

Case (18):

α3=0,k3=-3k2,β1=-1/92α2+9μ2α22μ2,β2=1/9α24α2-9μ2μ2,λ3=1/93sα23μ2-3μ22+4μ32α2μ2μ3s,λ1=-199δα22μ2-2sα23-9sα22μ2-4μ22α2μ2s,λ2=-199δα22μ2+4sα23-9sα22μ2+8μ2α2μ2s,T(x,y,z,t)=e1/4tμ22-1/2x2α2-yβ1-zλ1-ϵ1+k1e-1/4tμ22+1/2x2α2+yβ1+zλ1+ϵ1+k2costμ2+xα2+yβ2+zλ2+ϵ2-3k2sintμ3-1/3yα22μ3+zλ3+ϵ3,u(x,y,z,t)=2Txxx,y,z,t/Tx,y,z,t-Txx,y,z,t/Tx,y,z,t2. 51

Interpretation of results for breather wave

In this section, we discuss the dynamic properties by setting some special values for the free parameters in these solutions. For example, substituting

α2=1,k1=1,k2=2,k3=2,μ1=1,μ2=3,μ3=2,ϵ1=ϵ2=ϵ3=1,s=1,δ=2, 52

into Eq. (48), we can obtain the following breather wave soliton solution

u(x,y,z,t)=-4cos-3t-x+2/3y+4/3z-1e-t-z/3-1+et+z/3+1+2cos-3t-x+2/3y+4/3z-1+2sin2t+2/3z+1-8sin-3t-x+2/3y+4/3z-12e-t-z/3-1+et+z/3+1+2cos-3t-x+2/3y+4/3z-1+2sin2t+2/3z+12. 53

The dynamic properties to Eq. (53) are described in Figs. 6 and 7. Figures 6 and 7 show the interaction breather wave soliton solutions for specified values of x=t=1,y=t=1,z=t=1,x=y=1,x=z=1,y=z=1,x=-2,t=3,y=-2,t=3,z=-2,t=3, respectively. Figure 6 includes density solutions and Fig. 7 presents two dimensional behaviours.

Fig. 6.

Fig. 6

Breather wave soliton (53) with different parameters of Case (15) x=t=1,y=t=1,z=t=1,x=y=1,x=z=1,y=z=1,x=-2,t=3,y=-2,t=3,z=-2,t=3, respectively.

Fig. 7.

Fig. 7

2D plot of Breather wave soliton (53) with different parameters of Case (15) x=t=1,y=t=1,z=t=1,x=y=1,x=z=1,y=z=1,x=-2,t=3,y=-2,t=3,z=-2,t=3, respectively.

By substituting below

α1=2,α2=1,k2=2,k3=2,β3=1,μ2=2,ϵ1=ϵ2=ϵ3=1,s=1,δ=2, 54

into Eq. (50), we can obtain the following breather wave soliton solution

u(x,y,z,t)=8e16t-2x+11y6+4/3z-1+1/2e-16t+2x-11y6-4/3z+1-4cos-2t-x+17y24+41z24-1e16t-2x+11y6+4/3z-1+1/16e-16t+2x-11y6-4/3z+1+2cos-2t-x+17y24+41z24-1+2siny+z+1-2-2e16t-2x+11y6+4/3z-1+1/8e-16t+2x-11y6-4/3z+1+2sin-2t-x+17y24+41z24-12e16t-2x+11y6+4/3z-1+1/16e-16t+2x-11y6-4/3z+1+2cos-2t-x+17y24+41z24-1+2siny+z+12. 55

The dynamic properties to Eq. (55) are described in Fig. 8. Figure 8 show the interaction breather wave soliton solutions for specified values of x=t=1,y=t=1,z=t=1,x=y=1,x=z=1,y=z=1,x=-2,t=3,y=-2,t=3,z=-2,t=3, respectively. Figure 8 includes density solutions.

Fig. 8.

Fig. 8

Breather wave soliton (55) with different parameters of Case (15) x=t=1,y=t=1,z=t=1,x=y=1,x=z=1,y=z=1,x=-2,t=3,y=-2,t=3,z=-2,t=3, respectively.

By substituting below

α1=2,α2=1,k2=2,k3=2,β3=1,μ2=2,ϵ1=ϵ2=ϵ3=1,s=1,δ=2, 56

into Eq. (51), we can obtain the following breather wave soliton solution

u(x,y,z,t)=e1/4t2-1/2x2+11y218+1/6z2-2+2e-1/4t2+1/2x2-11y218-1/6z2+2-4cos-t-x+5/9y+7/3z-1/T(x,y,z,t)-2-1/22e1/4t2-1/2x2+11y218+1/6z2-2+2e-1/4t2+1/2x2-11y218-1/6z2+2+2sin-t-x+5/9y+7/3z-12/T2(x,y,z,t),T(x,y,z,t)=e1/4t2-1/2x2+11y218+1/6z2-2+2e-1/4t2+1/2x2-11y218-1/6z2+2+2cos-t-x+5/9y+7/3z-1-6sin2t-y/6+8z9+2. 57

The dynamic properties to Eq. (57) are described in Figs. 9 and 10. Figures 9 and 10 show the interaction breather wave soliton solutions for specified values of x=t=1,y=t=1,z=t=1,x=y=1,x=z=1,y=z=1,x=-2,t=3,y=-2,t=3,z=-2,t=3, respectively. Figure 9 includes density solutions and Fig. 10 presents two dimensional behaviours.

Fig. 9.

Fig. 9

Density plots of Breather wave soliton (57) with different parameters of Case (15) x=t=1,y=t=1,z=t=1,x=y=1,x=z=1,y=z=1,x=-2,t=3,y=-2,t=3,z=-2,t=3, respectively.

Fig. 10.

Fig. 10

2D plots of Breather wave soliton (57) with different parameters of Case (15) x=t=1,y=t=1,z=t=1,x=y=1,x=z=1,y=z=1,x=-2,t=3,y=-2,t=3,z=-2,t=3, respectively.

Multiple Rogue wave

This part explains a efficient clarification of different Exp-function strategy85,86 so that it can be encourage connected to the nonlinear PDEs as bellow:

Step 1: Consider NLPDE

P(x,y,z,t,u,ux,uy,uz,ut,uxx,uxxx,uxxy,uxxz,...)=0. 58

A Painlevé analysis is introduced

u=T(T), 59

according to the dependant variable function T. Step 2: By utilizing the relation (59), the nonlinear equation (58) is given as the following Hirota’s bilinear form

G(Dξ,Dz;T)=0, 60

where ξ=x+by-dt and bd are the real values. Moreover, the D-operator is shown as

i=12DmiiT1.T2=i=12mi-miβiT1(m)T2(m)m=m, 61

where the vectors m=(m1,m2)=(ξ,z), m=(m1,m2)=(ξ,z) and β1,β2 are arbitrary nonnegative integers. Step 3: Let86

T=T(ξ,z;q,p)=χn+1(ξ,z)+2pzpn(ξ,z)+2qξsn(ξ,z)+(q2+p2)χn-1(ξ,z), 62

with

χn(ξ,z)=k=0n(n+1)2i=0kan(n+1)-2k,2iz2iξn(n+1)-2k, 63
pn(ξ,z)=k=0n(n+1)2i=0kbn(n+1)-2k,2iz2iξn(n+1)-2k,sn(ξ,z)=k=0n(n+1)2i=0kcn(n+1)-2k,2iz2iξn(n+1)-2k,

χ0=1,χ1=p0=s0=0, where am,l,bm,l,cm,l(m,l{0,2,4,,n(n+1)}) and pq are real values. The coefficients am,l,bm,l,cm,l can be found, and special values pq are utilized to control the wave center. The rest steps were presented in85. Based on ξ=x+by-dt, Eq. (6) is transformed as bellow form

B~(T)=[(δ+sb)Dξ4-(1+b+bd)Dξ2+sDξ3Dz]T.T 64
=(δ+sb)(TTξξξξ-4TξTξξξ+3Tξξ2)-(1+b+bd)(TTxx-Tx2)+s(Tξξξz-TzTξξξ-3TxTξξz+3TξξTξz)=0.

in which bd are unfound parameters and Eq. (64) is used using the below bilinear transformation

u=2(lnT)ξξ. 65

With considering n=0 at (62), then (62) will be as

T=T1(ξ,z;q,p)=χ1(ξ,z)+2pzp0(ξ,z)+2qξs0(ξ,z)+(q2+p2)χ-1(ξ,z)=a2,0ξ2+a0,2z2+a0,0, 66

without loss of generality, we can choose a2,0=1. Inserting (66) into (65) and setting all the coefficients of the different powers of zmξm to zero, the nonlinear algebraic equations are reached as

-4bda0,0+24bs-4da0,0+24δ-4a0,0=0, 67
4bd+4d+40.

Solving Eq. (67), we get

a0,0=6bs+δbd+d+1,a0,2=a0,2. 68

Therefore, the solution of Eq. (66) is

T=T1(ξ,z;q,p)=a0,2z-p2+ξ-q2+6bs+δbd+d+1, 69

by supposing bd+d+1>0, then the first-order rogue wave solutions of Eq. (1) is given

u(ξ,z)=4a0,2z-p2+ξ-q2+6bs+δbd+d+1-1- 70
22ξ-2q2a0,2z-p2+ξ-q2+6bs+δbd+d+1-2.

The above rogue wave has the following features

limξ±u(ξ,z)=0,limz±u(ξ,z)=0. 71

By selecting suitable values of parameters, the graphical representation of periodic wave solution is presented in Fig. 11 including 3D plot, contour plot, and 2D plot when three spaces arise at spaces z=-1, z=0, and z=1. In Fig. 11 (the first row) the rogue wave has one center (5, 5), (the second row) the rogue wave has one center (0, 0), while in Fig. 11 (the third row) the rogue wave has one center (-5,-5). Because of using a simple computation, the lump has two critical points, but we investigate only one point (ξ1,z1)=q,p. At the point (ξ1,z1), the second order derivative and Hessian matrix can be determined in below

Θ1=2ξ2Ψ(ξ,z)(ξ1,z1)=-2/3bd+d+12bs+δ2,Δ1=det2ξ2u(ξ,z)2ξzu(ξ,z)2ξzu(ξ,z)2z2u(ξ,z)(ξ1,z1)=4bd+d+14a0,227bs+δ4. 72

If a0,2<0, then the solution (ξ1,z1) is the lump solution is the only local maximum point of function u(ξ,z), while if a0,2>0, then the local minimum point of function u(ξ,z) does not occurs. Based on above analysis, the point (ξ1,z1) is a maximum value point with value umax in which is 2/3bd+d+1bs+δ. Figure 11 (the first row) is presented for first rogue solution with values a0,2=2,a0,0=2,p=5,q=5,b=1,d=2,δ=2,s=1. Figure 11 (the second row) is shown for first rogue solution with values a0,2=2,a0,0=2,p=0,q=0,b=1,d=2,δ=2,s=1. Moreover, Fig. 11 (the third row) is presented for first rogue solution with values a0,2=2,a0,0=2,p=-5,q=-5,b=1,d=2,δ=2,s=1.

Fig. 11.

Fig. 11

The one-order rogue wave (70) at the first row a0,2=2,a0,0=2,p=5,q=5,b=1,d=2,δ=2,s=1, the second row a0,2=2,a0,0=2,p=0,q=0,b=1,d=2,δ=2,s=1 and the third row a0,2=2,a0,0=2,p=-5,q=-5,b=1,d=2,δ=2,s=1.

For finding second rogue wave, take n=1 at (62), then (62) will be as

T=T2(ξ,z;q,p)=χ2(ξ,z)+2pzp1(ξ,z)+2qξs1(ξ,z)+(q2+p2)χ0(ξ,z)= 73
ξ6+a4,2z2ξ4+a2,4z4ξ2+a0,6z6+a4,0ξ4+a2,2z2ξ2+a0,4z4+a2,0ξ2+a0,2z2+a0,0+2pzξ2b2,0+z2b0,2+b0,0+2qξξ2c2,0+z2c0,2+c0,0+p2+q2,

for simplifying we choose a6,0=1. Inserting (73) into (65) we can get the following results:

a0,0=-1/99bbd+d+1-q2c2,02+p2a6,0+q2a6,0-δp2b2,02ba6,0bd+d+1,a0,2=a6,0c0,02bd+d+1bc2,02δ, 74
a0,4=-2b2bd+d+12a6,0c0,0δ2c2,0,a0,6=b3bd+d+13a6,0δ3,a2,0=a6,0c0,02c2,02,a2,4=3b2bd+d+12a6,0δ2,a4,0=2a6,0c0,0c2,0,a4,2=3ba6,0bd+d+1δ,b0,0=1/3b2,0c0,0c2,0,b0,2=-1/3b2,0bd+d+1bδ,c0,2=-3bd+d+1bc2,0δ,a2,2=0,

in which b,d,c0,0,b2,0,a6,0 and c2,0 are arbitrary values. Thus, the second-order rogue wave solutions of Eq. (1) is given as

u(ξ,y)=2(lnT2(ξ,z;q,p))ξξ, 75

where T2(ξ,y;q,p) is given in Eq. (73). We analysis of second order rogue wave solution plots related to (73) with parameters available in (74). Figure 12 (the first row) is presented for second rogue solution with values p=10,q=10,b2,0=2,c2,0=3,b=3,d=1,a6,0=1,c0,0=1,δ=2. Figure 12 (the second row) is shown for second rogue solution with values p=-3,q=-3,b2,0=2,c2,0=3,b=3,d=1,a6,0=1,c0,0=1,δ=2. Moreover, Fig. 12 (the third row) is presented for second rogue solution with values p=-10,q=-10,b2,0=2,c2,0=3,b=3,d=1,a6,0=1,c0,0=1,δ=2.

Fig. 12.

Fig. 12

The second form rogue wave (75) at p=10,q=10,b2,0=2,c2,0=3,b=3,d=1,a6,0=1,c0,0=1,δ=2 (the first row), p=-3,q=-3,b2,0=2,c2,0=3,b=3,d=1,a6,0=1,c0,0=1,δ=2 (the second row) and p=-10,q=-10,b2,0=2,c2,0=3,b=3,d=1,a6,0=1,c0,0=1,δ=2 (the third row).

Sets of solutions are listed as:

T21(ξ,z;q,p)=a6,0ξ6+3a6,0bd+d+1bc2,0z2ξ4bdc0,0+dc0,0+δc2,0+c0,0+3bd+d+12b2c2,02a6,0z4ξ2bdc0,0+dc0,0+δc2,0+c0,02+b3c2,03bd+d+13a6,0z6bdc0,0+dc0,0+δc2,0+c0,03-25a6,0c0,0ξ4c2,0-90a6,0c0,0bd+d+1bz2ξ2bdc0,0+dc0,0+δc2,0+c0,0-17b2bd+d+12a6,0c0,0c2,0z4bdc0,0+dc0,0+δc2,0+c0,02-125a6,0c0,02ξ2c2,02+475a6,0c0,02bd+d+1bz2c2,0bdc0,0+dc0,0+δc2,0+c0,0-1/99bbd+d+1-c2,05q2+p2a6,0c2,03+q2a6,0c2,03+1875a6,02c0,03-p2b2,02c2,02bdc0,0+dc0,0+δc2,0+c0,0c2,03ba6,0bd+d+1+2pzξ2b2,0-1/3z2b2,0bd+d+1bc2,0bdc0,0+dc0,0+δc2,0+c0,0-5/3b2,0c0,0c2,0+2qξξ2c2,0-3z2bd+d+1bc2,02bdc0,0+dc0,0+δc2,0+c0,0+c0,0+p2+q2,T22(ξ,z;q,p)=a6,0ξ6+3a6,0bd+d+1bz2ξ4δ+3bd+d+12b2a6,0z4ξ2δ2+b3bd+d+13a6,0z6δ3+a4,0ξ4-b2bd+d+12a4,0z4δ2+1/4a4,02ξ2a6,0+1/4a4,02bd+d+1bz2δa6,0,T23(ξ,z;q,p)=a6,0ξ6-75a6,02bd+d+1bz2ξ4bda4,0+da4,0-25δa6,0+a4,0+1875a6,03bd+d+12b2z4ξ2bda4,0+da4,0-25δa6,0+a4,02-15625b3a6,04bd+d+13z6bda4,0+da4,0-25δa6,0+a4,03+a4,0ξ4-90a4,0a6,0bd+d+1bz2ξ2bda4,0+da4,0-25δa6,0+a4,0+425b2a6,02a4,0bd+d+12z4bda4,0+da4,0-25δa6,0+a4,02-1/5a4,02ξ2a6,0-19a4,02bd+d+1bz2bda4,0+da4,0-25δa6,0+a4,0-225ba6,02p2+q2bd+d+1-a4,0bd+d+1-p2b2,02+27ba4,02-25δp2b2,02a6,0225ba6,02bd+d+1+2pzξ2b2,0+25z2b2,0a6,0bd+d+1b3bda4,0+3da4,0-75δa6,0+3a4,0+1/15b2,0a4,0a6,0+p2+q2,T24(ξ,z;q,p)=a6,0ξ6+3a6,0dδ-ds-sz2ξ4s2+3a6,0dδ-ds-s2z4ξ2s4+a6,0dδ-ds-s3z6s6+a4,0ξ4-dδ-ds-s2a4,0z4s4+1/4a4,02ξ2a6,0+1/4a4,02dδ-ds-sz2a6,0s2-1/9-p2s2b2,02+9dδp2a6,0+9dδq2a6,0-9dp2sa6,0-9dq2sa6,0-9p2sa6,0-9q2sa6,0a6,0dδ-ds-s+2pzξ2b2,0-1/3z2b2,0dδ-ds-ss2+1/6b2,0a4,0a6,0+p2+q2. 76

Result and discussion

This portion compares the arrangements to a generalized breaking soliton system in (3 + 1)-dimensions arising in wave propagation inferred from the expository wave arrangements in this article and those found within the writing. Numerous analysts have examined to analyze a generalized breaking soliton system arising with diverse procedures. Alternately, the nonlinear differential administrator has been utilized to produce numerous wave arrangements for the specified equation as shown in the related section.

Furthermore, an analysis based on the Hirota bilinear approach is made on arrangements advertised in this original copy as well as we found by wrinkle soliton arrangements. In spite of employing a assortment of strategies, four cases have been effectively completed including periodic form solutions to a generalized breaking soliton system. Among them, cosines function forms also investigated the exact soliton solutions. Also, numerous soliton arrangements for the given demonstrate are found utilizing the hirota bilinear method.

Conclusion

This paper included two methods including the Hirota bilinear technique to resolve the (3 + 1)-dimensional a generalized breaking soliton system. As a resultant, numerous double-periodic solitons and breather waves were created, counting singular wave arrangement, periodic wave solution, asymptotic case of periodic wave solution, and soliton solutions. In addition, the multiple rogue wave solutions were obtained. The affect of wave speed and other free variables on the wave profile was additionally examined. This approach was proven to be effective and applicable to a variety of NLEEs in mathematical physics. The display comes about can be extended indeed encourage when different other sorts of nonlinearities are examined. This can be formidable research in the future.

In the field of nonlinear engineering, the soliton structures found in the literature may be of interest to researchers. It was realized that this strategy is brief, worthwhile, and productive and that considerable number of solutions can be obtained in comparison to previous ways. The accuracy of the results was tested using Maple software by substituting the obtained results into the original equation.

Acknowledgements

The authors extend their appreciation to Taif University, Saudi Arabia, for supporting this work through project number (TU-DSPP-2024-51).

Author contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Funding

This research was funded by Taif University, Saudi Arabia, Project No. (TU-DSPP-2024-51).

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Hui, Z. et al. Switchable single- to multiwavelength conventional soliton and bound-state soliton generated from a NbTe2 saturable absorber-based passive mode-locked erbium-doped fiber laser. ACS Appl. Mater. Interfaces16(17), 22344–22360 (2024). 10.1021/acsami.3c19323 [DOI] [PubMed] [Google Scholar]
  • 2.Han, D. et al. LMCA: A lightweight anomaly network trafc detection model integrating adjusted mobilenet and coordinate attention mechanism for IoT. Telecommun. Syst.84, 549–564 (2023). 10.1007/s11235-023-01059-5 [DOI] [Google Scholar]
  • 3.Dou, J. et al. Surface activity, wetting, and aggregation of a per-fuoropolyether quaternary ammonium salt surfactant with a hydroxyethyl group. Molecules28(20), 7151 (2023). 10.3390/molecules28207151 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Fei, R., Guo, Y., Li, J., Hu, B. & Yang, L. An improved BPNN method based on probability density for indoor location. IEICE Trans. Inf. Syst.106(5), 773–785 (2023). 10.1587/transinf.2022DLP0073 [DOI] [Google Scholar]
  • 5.Li, X. et al. Electric-feld-driven printed 3D highly ordered microstructure with cell feature size promotes the maturation of engineered cardiac tissues. Adv. Sci.10(11), 2206264 (2023). 10.1002/advs.202206264 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Hong, J., Gui, L. & Cao, J. Analysis and experimental verification of the tangential force effect on electromagnetic vibration of pm motor. IEEE Trans. Energy Convers.38(3), 1893–1902 (2023). 10.1109/TEC.2023.3241082 [DOI] [Google Scholar]
  • 7.He, X. et al. Excellent microwave absorption performance of LaFeO3/Fe3O4/C perovskite composites with optimized structure and impedance matching. Carbon213, 118200 (2023). 10.1016/j.carbon.2023.118200 [DOI] [Google Scholar]
  • 8.Zhao, Y. et al. Intelligent control of multilegged robot smooth motion: A review. IEEE Access11, 86645–86685 (2023). 10.1109/ACCESS.2023.3304992 [DOI] [Google Scholar]
  • 9.Meng, S., Meng, F., Chi, H., Chen, H. & Pang, A. A robust observer based on the nonlinear descriptor systems application to estimate the state of charge of lithium-ion batteries. J. Franklin Inst.360(16), 11397–11413 (2023). 10.1016/j.jfranklin.2023.08.037 [DOI] [Google Scholar]
  • 10.Chen, D. L., Zhao, J. W. & Qin, S. R. SVM strategy and analysis of a three-phase quasi-Z-source inverter with high voltage transmission ratio. Sci. China Tech. Sci.66, 2996–3010 (2023). 10.1007/s11431-022-2394-4 [DOI] [Google Scholar]
  • 11.Chen, D., Zhao, T., Han, L. & Feng, Z. Single-stage multi-input buck type high-frequency link’s inverters with series and simultaneous power supply. IEEE Trans. Power Electron.37(6), 7411–7421 (2022). 10.1109/TPEL.2021.3139646 [DOI] [Google Scholar]
  • 12.Chen, D., Zhao, T. & Xu, S. Single-stage multi-input buck type high-frequency link’s inverters with multiwinding and time-sharing power supply. IEEE Trans. Power Electron.37(10), 12763–12773 (2022). 10.1109/TPEL.2022.3176377 [DOI] [Google Scholar]
  • 13.Wang, T., Zhang, S., Yang, Q. & Liew, S. C. Account service network: A unified decentralized web 3.0 portal with credible anonymity. IEEE Netw.37(6), 101–108 (2023). 10.1109/MNET.2023.3321090 [DOI] [Google Scholar]
  • 14.Li, J., Tang, H., Li, X., Dou, H. & Li, R. LEF-YOLO: A lightweight method for intelligent detection of four extreme wildfires based on the YOLO framework. Int. J. Wildland Fire33, WF23044 (2023). 10.1071/WF23044 [DOI] [Google Scholar]
  • 15.Zhao, Y. et al. Release pattern of light aromatic hydrocarbons during the biomass roasting process. Molecules29(6), 1188 (2024). 10.3390/molecules29061188 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Zhang, M., Xie, X., Manafian, J., Ilhan, O. A. & Singh, G. Characteristics of the new multiple rogue wave solutions to the fractional generalized CBS-BK equation. J. Adv. Res.38(38), 131–42 (2022). 10.1016/j.jare.2021.09.015 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Wu, W. et al. Numerical and analytical results of the 1D BBM equation and 2D coupled BBM-system by finite element method. Int. J. Mod. Phys. B36(28), 2250201 (2022). 10.1142/S0217979222502010 [DOI] [Google Scholar]
  • 18.Liu, M. et al. Wave profile, Paul–Painlevé approaches and phase plane analysis to the generalized (3+1)-dimensional shallow water wave model. Qual. Theor. Dyn. Syst.23, 41 (2024). 10.1007/s12346-023-00896-8 [DOI] [Google Scholar]
  • 19.Manafian, J. On the complex structures of the Biswas–Milovic equation for power, parabolic and dual parabolic law nonlinearities. Eur. Phys. J. Plus130, 255 (2015). 10.1140/epjp/i2015-15255-5 [DOI] [Google Scholar]
  • 20.Manafian, J., Foroutan, M. R. & Guzali, A. Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan–Porsezian–Daniel model. Eur. Phys. J. Plus132, 494 (2017). 10.1140/epjp/i2017-11762-7 [DOI] [Google Scholar]
  • 21.Manafian, J. Optical soliton solutions for Schrödinger type nonlinear evolution equations by the Inline graphic-expansion method. Optik127, 4222–4245 (2016). 10.1016/j.ijleo.2016.01.078 [DOI] [Google Scholar]
  • 22.Zhu, C., Al-Dossari, M., Rezapour, S. & Gunay, B. On the exact soliton solutions and different wave structures to the (2+1) dimensional Chaffee–Infante equation. Results Phys.57, 107431 (2024). 10.1016/j.rinp.2024.107431 [DOI] [Google Scholar]
  • 23.Kai, Y. & Yin, Z. On the Gaussian traveling wave solution to a special kind of Schrödinger equation with logarithmic nonlinearity. Mod. Phys. Lett. B36(02), 2150543 (2021). 10.1142/S0217984921505436 [DOI] [Google Scholar]
  • 24.Bouchaala, F., Matsushima, J. & Ali, M. Potential of seismic attenuation for geotechnical investigation of carbonate subsurface. In NSG2023 29th European Meeting of Environmental and Engineering Geophysics, vol. 2023, No. 1, 1–5 (European Association of Geoscientists Engineers, 2023).
  • 25.Li, R. et al. Different forms of optical soliton solutions to the Kudryashov’s quintuple self-phase modulation with dual-form of generalized nonlocal nonlinearity. Results Phys.46, 106293 (2023). 10.1016/j.rinp.2023.106293 [DOI] [Google Scholar]
  • 26.Surugiu, M. R., Vasile, V., Mazilescu, R., Surugiu, C. & Vasile, R. An analysis of the government revenue-expenditure nexus: A wavelet approach for the Romanian case. Econ. Finance Lett.10(1), 78–93 (2023). 10.18488/29.v10i1.3299 [DOI] [Google Scholar]
  • 27.Kapse, Y. D. & Mohani, S. P. Performance analysis of OFDM with variations in cyclic prefix and FFT lengths. Rev. Comput. Eng. Res.10(4), 182–198 (2023). 10.18488/76.v10i4.3551 [DOI] [Google Scholar]
  • 28.Xie, X. et al. Fluid inverse volumetric modeling and applications from surface motion. IEEE Trans. Visualiz. Comput. Graphics. 10.1109/TVCG.2024.3370551 (2024). [DOI] [PubMed]
  • 29.Aghazadeh, M. R., Asgari, T., Shahi, A. & Farahm, A. Designing strategy formulation processing model of governmental organizations based on network governance. Quart. J. Public Organ. Manag.4(1), 29–52 (2016). [Google Scholar]
  • 30.Gholamiangonabadi D, Nakhodchi S, Jalalimanesh A, & Shahi A. Customer churn prediction using a meta-classifier approach; A case study of Iranian banking industry. In Proc Int Conf Indust Eng Operat Manag 364–375 (2019).
  • 31.Nisar, K. S. et al. Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method. Results Phys.21, 103769 (2021). 10.1016/j.rinp.2020.103769 [DOI] [Google Scholar]
  • 32.Zhang, H., Manafian, J., Singh, S., Ilhan, O. A. & Zekiy, A. O. Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method. Results Phys.25, 104168 (2021). 10.1016/j.rinp.2021.104168 [DOI] [Google Scholar]
  • 33.Xie, G. et al. A gradient-enhanced physics-informed neural networks method for the wave equation. Eng. Anal. Bound. Elem.166, 105802 (2024). 10.1016/j.enganabound.2024.105802 [DOI] [Google Scholar]
  • 34.Zhu, L. et al. A novel hybrid excitation magnetic lead screw and its transient sub-domain analytical model for wave energy conversion. IEEE Trans. Energy Convers.10.1109/TEC.2024.3354512 (2024). 10.1109/TEC.2024.3354512 [DOI] [Google Scholar]
  • 35.Zhang, K. et al. Eatn: An efficient adaptive transfer network for aspect-level sentiment analysis. IEEE Trans. Knowl. Data Eng.35(1), 377–389 (2021). [Google Scholar]
  • 36.Zhao, G., Bouchaala, F. & Jouini, M.S. Anisotropy estimation by using machine learning methods. In Seventh International Conference on Engineering Geophysics, Al Ain, UAE, vol. 16–19, 217–221 (Society of Exploration Geophysicists, 2024).
  • 37.Chen, W. et al. Cutting-edge analytical and numerical approaches to the gilson-pickering equation with plenty of soliton solutions. Mathematics11, 3454 (2023). 10.3390/math11163454 [DOI] [Google Scholar]
  • 38.Zhang, T., Deng, F. & Shi, P. Nonfragile finite-time stabilization for discrete mean-field stochastic systems. IEEE Trans. Autom. Control68(10), 6423–6430 (2023). 10.1109/TAC.2023.3238849 [DOI] [Google Scholar]
  • 39.Liu, W., Bai, X., Yang, H., Bao, R. & Liu, J. Tendon driven bistable origami flexible gripper for high-speed adaptive grasping. IEEE Robot. Autom. Lett.9(6), 5417–5424 (2024). 10.1109/LRA.2024.3389413 [DOI] [Google Scholar]
  • 40.Dawod, L. A., Lakestani, M. & Manafian, J. Breather wave solutions for the (3+1)-D generalized shallow water wave equation with variable coefficients. Qual. Theor. Dyn. Syst.22, 127 (2023). 10.1007/s12346-023-00826-8 [DOI] [Google Scholar]
  • 41.Pan, Y. et al. N-lump solutions to a (3+1)-dimensional variable-coefficient generalized nonlinear wave equation in a liquid with gas bubbles. Qual. Theor. Dyn. Syst.21, 127 (2022). 10.1007/s12346-022-00658-y [DOI] [Google Scholar]
  • 42.Bouchaala, F., Ali, M.Y., Matsushima, J., Jouini, M.S., Mohamed, A.A.I. & Nizamudin, S. Experimental study of seismic wave attenuation in carbonate rocks. SPE J. 1–15 (2024).
  • 43.Wang, K. et al. Experimental study of mechanical properties of hot dry granite under thermal-mechanical couplings. Geothermics119, 102974 (2024). 10.1016/j.geothermics.2024.102974 [DOI] [Google Scholar]
  • 44.Jia, G. et al. Valley quantum interference modulated by hyperbolic shear polaritons. Phys. Rev. B109, 155417 (2024). 10.1103/PhysRevB.109.155417 [DOI] [Google Scholar]
  • 45.Zhu, C., Al-Dossari, M., El-Gawaad, N. S. A., Alsallami, S. A. M. & Shateyi, S. Uncovering diverse soliton solutions in the modified Schrödinger’s equation via innovative approaches. Results Phys.54, 107100 (2023). 10.1016/j.rinp.2023.107100 [DOI] [Google Scholar]
  • 46.Mehrpooya, M., Ghadimi, N., Marefati, M. & Ghorbanian, S. A. Numerical investigation of a new combined energy system includes parabolic dish solar collector, stirling engine and thermoelectric device. Int. J. Energy Res.45(11), 16436–16455 (2021). 10.1002/er.6891 [DOI] [Google Scholar]
  • 47.Jiang, W., Wang, X., Huang, H., Zhang, D. & Ghadimi, N. Optimal economic scheduling of microgrids considering renewable energy sources based on energy hub model using demand response and improved water wave optimization algorithm. J. Energy Storage55(1), 105311 (2022). 10.1016/j.est.2022.105311 [DOI] [Google Scholar]
  • 48.Erfeng, H. & Ghadimi, N. Model identification of proton-exchange membrane fuel cells based on a hybrid convolutional neural network and extreme learning machine optimized by improved honey badger algorithm. Sustain. Energy Tech. Asses.52, 102005 (2022). [Google Scholar]
  • 49.Cai, W. et al. Optimal bidding and offering strategies of compressed air energy storage: A hybrid robust-stochastic approach. Renew. Energy143, 1–8 (2019). 10.1016/j.renene.2019.05.008 [DOI] [Google Scholar]
  • 50.Saeedi, M., Moradi, M., Hosseini, M., Emamifar, A. & Ghadimi, N. Robust optimization based optimal chiller loading under cooling demand uncertainty. Appl. Therm. Eng.148, 1081–1091 (2019). 10.1016/j.applthermaleng.2018.11.122 [DOI] [Google Scholar]
  • 51.Yuan, Z., Wang, W., Wang, H. & Ghadimi, N. Probabilistic decomposition-based security constrained transmission expansion planning incorporating distributed series reactor. IET Gener. Trans. Distrib.14(17), 3478–3487 (2020). 10.1049/iet-gtd.2019.1625 [DOI] [Google Scholar]
  • 52.Mir, M., Shafieezadeh, M., Heidari, M. A. & Ghadimi, N. Application of hybrid forecast engine based intelligent algorithm and feature selection for wind signal prediction. Evol. Syst.11(4), 559–573 (2020). 10.1007/s12530-019-09271-y [DOI] [Google Scholar]
  • 53.Zhang, J., Khayatnezhad, M. & Ghadimi, N. Optimal model evaluation of the proton exchange membrane fuel cells based on deep learning and modified African vulture optimization algorithm. Energy Sources A44, 287–305 (2022). 10.1080/15567036.2022.2043956 [DOI] [Google Scholar]
  • 54.Ali, T. A. A., Xiao, Z., Jiang, H. & Li, B. A class of digital integrators based on trigonometric quadrature rules. IEEE Trans. Ind. Electron.71(6), 6128–6138 (2024). 10.1109/TIE.2023.3290247 [DOI] [Google Scholar]
  • 55.Diop, A. M. et al. Design electrical model noise and perform nonlinearities of SiGe bipolar phototransistor. Int. J. Innov. Res. Sci. Stud.6(4), 731–740 (2023). [Google Scholar]
  • 56.Yu, D. et al. Energy management of wind-PV-storage-grid based large electricity consumer using robust optimization technique. J. Energy Storage27, 101054 (2020). 10.1016/j.est.2019.101054 [DOI] [Google Scholar]
  • 57.Dongmin, Y. & Ghadimi, N. Reliability constraint stochastic UC by considering the correlation of random variables with Copula theory. IET Renew. Power Gener.13(14), 2587–93 (2019). 10.1049/iet-rpg.2019.0485 [DOI] [Google Scholar]
  • 58.Chen, L. et al. Optimal modeling of combined cooling, heating, and power systems using developed African vulture optimization: A case study in watersport complex. Energy Sources A44, 4296–4317 (2022). 10.1080/15567036.2022.2074174 [DOI] [Google Scholar]
  • 59.Jiang, H., Li, S. M. & Wang, W. G. Moderate deviations for parameter estimation in the fractional Ornstein–Uhlenbeck processes with periodic mean. Acta Math. Sin. English Ser.40, 1308–1324 (2024). 10.1007/s10114-023-2157-z [DOI] [Google Scholar]
  • 60.Qawaqneh, H., Manafian, J., Alharthi, M. & Alrashedi, Y. Stability analysis, modulation instability, and beta-time fractional exact soliton solutions to the Van der Waals equation. Mathematics12, 2257 (2024). 10.3390/math12142257 [DOI] [Google Scholar]
  • 61.Lei, M. et al. Electro-sorting create heterogeneity: Constructing a multifunctional janus film with integrated compositional and microstructural gradients for guided bone regeneration. Adv. Sci.11, 2307606 (2024). 10.1002/advs.202307606 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Manafian, J., Ilhan, O. A., Alizadeh, A. & Mohammed, S. A. Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and SIVP schemes arising in fluid mechanics. Commun. Theor. Phys.72, 075002 (2020). 10.1088/1572-9494/ab8a13 [DOI] [Google Scholar]
  • 63.Manafian, J. et al. Dynamical behaviors of lumpoff and rogue wave solutions for nonlocal Gardner equation. Math. Prob. Eng.2022, 100324 (2022). 10.1155/2022/9360263 [DOI] [Google Scholar]
  • 64.Chen, W. et al. Cutting-edge analytical and numerical approaches to the Gilson-Pickering equation with plenty of soliton solutions. Math.11(16), 3454 (2023). 10.3390/math11163454 [DOI] [Google Scholar]
  • 65.Qian, Y. et al. Nonparaxial solitons and the dynamics of solitary waves for the coupled nonlinear Helmholtz systems. Opt. Quant. Electron.55, 1022 (2023). 10.1007/s11082-023-05232-7 [DOI] [Google Scholar]
  • 66.Feng, Y., Bilige, S. & Wang, X. Diverse exact analytical solutions and novel interaction solutions for the (2+1)-dimensional Ito equation. Phys. Scr.95, 095201 (2020). 10.1088/1402-4896/aba71b [DOI] [Google Scholar]
  • 67.Ma, H. C., Wu, H. F., Ma, W. X. & Deng, A. P. Localized interaction solutions of the (2+1)-dimensional Ito equation. Opt. Quant. Electron.53, 303 (2021). 10.1007/s11082-021-02909-9 [DOI] [Google Scholar]
  • 68.Liu, Y., Zhang, W. X. & Ma, W. X. Riemann–Hilbert problems and soliton solutions for a generalized coupled Sasa–Satsuma equation. Commun. Nonlinear Sci. Num. Simul.118, 107052 (2023). 10.1016/j.cnsns.2022.107052 [DOI] [Google Scholar]
  • 69.Zeng, S., Liu, Y., Chen, X. & Zhang, W. X. Various breathers, lumps, line solitons and their interaction solutions for the (2+1)-dimensional variable-coefficient Sawada–Kotera equation. Results Phys.42, 105992 (2022). 10.1016/j.rinp.2022.105992 [DOI] [Google Scholar]
  • 70.Kai, Y., Chen, S., Zhang, K. & Yin, Z. Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation. Waves Random Complex Media10.1080/17455030.2022.2044541 (2022). 10.1007/s11071-022-07322-9 [DOI] [Google Scholar]
  • 71.Liao, L. et al. Color image recovery using generalized matrix completion over higher-order finite dimensional algebra. Axioms12(10), 954 (2023). 10.3390/axioms12100954 [DOI] [Google Scholar]
  • 72.Chen, C., Han, D. & Chang, C. C. MPCCT: Multimodal vision-language learning paradigm with context-based compact transformer. Pattern Recogn.147, 110084 (2024). 10.1016/j.patcog.2023.110084 [DOI] [Google Scholar]
  • 73.Chen, C., Han, D. & Shen, X. CLVIN: Complete language-vision interaction network for visual question answering. Knowl.-Based Syst.275, 110706 (2023). 10.1016/j.knosys.2023.110706 [DOI] [Google Scholar]
  • 74.Shi, S., Han, D. & Cui, M. A multimodal hybrid parallel network intrusion detection model. Connect. Sci.35, 2227780 (2023). 10.1080/09540091.2023.2227780 [DOI] [Google Scholar]
  • 75.Wanh, H., Han, D., Cui, M. & Chen, C. NAS-YOLOX: A SAR ship detection using neural architecture search and multi-scale attention. Connect. Sci.35, 1–32 (2023). 10.1080/09540091.2023.2257399 [DOI] [Google Scholar]
  • 76.Chen, X., Yang, P., Wang, M., Hu, F. & Xu, J. Output voltage drop and input current ripple suppression for the pulse load power supply using virtual multiple quasi-notch-filters impedance. IEEE Trans. Power Electron.38(8), 9552–9565 (2023). 10.1109/TPEL.2023.3275304 [DOI] [Google Scholar]
  • 77.Gai, L., Wu, W., Ding, T. & Qian, Y. Lump wave solutions, lump-stripe soliton inelastic collision phenomena and rogue-type wave solutions for a generalized breaking soliton system in (3+1)-dimensions. Wave Motion124, 103243 (2024). 10.1016/j.wavemoti.2023.103243 [DOI] [Google Scholar]
  • 78.Ma, Y. L. & Li, B. Q. Interactions between soliton and rogue wave for a (2+1)-dimensional generalized breaking soliton system: Hidden rogue wave and hidden soliton. Comput. Math. Appl.78, 827–839 (2019). 10.1016/j.camwa.2019.03.002 [DOI] [Google Scholar]
  • 79.Osman, M. S. On multi-soliton solutions for the (2+1)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide. Comput. Math. Appl.75, 1–6 (2018). 10.1016/j.camwa.2017.08.033 [DOI] [Google Scholar]
  • 80.Ilhan, O. A. & Manafian, J. Periodic type and periodic cross-kink wave solutions to the (2+1)-dimensional breaking soliton equation arising in fluid dynamics. Mod. Phys. Lett. B33, 1950277 (2019). 10.1142/S0217984919502774 [DOI] [Google Scholar]
  • 81.Long, W. Multiple periodic-soliton solutions to Kadomtsev–Petviashvili equation. Appl. Math. Comput.218, 368–75 (2011). 10.1016/j.amc.2011.05.072 [DOI] [Google Scholar]
  • 82.Liu, J. G., Zhu, W. H., He, Y. & Seadawy, A. R. Complexiton solutions and periodic-soliton solutions for the (2+1)-dimensional BLMP equation. AIMS Math.5(1), 421–439 (2020). 10.3934/math.2020029 [DOI] [Google Scholar]
  • 83.Liu, J. G. & Tian, Y. New double-periodic soliton solutions for the (2+1)-dimensional breaking soliton equation. Commun. Theor. Phys.69, 585–97 (2018). 10.1088/0253-6102/69/5/585 [DOI] [Google Scholar]
  • 84.Liu, J. G., Zhu, W. H., Lei, Z. Q. & Ai, G. P. Double-periodic soliton solutions for the new (2+1)-dimensional KdV equation in fluid flows and plasma physics. Anal. Math. Phys.10, 41 (2020). 10.1007/s13324-020-00387-y [DOI] [PubMed] [Google Scholar]
  • 85.Ren, J., Ilhan, O. A., Bulut, H. & Manafian, J. Multiple rogue wave, dark, bright, and solitary wave solutions to the KP-BBM equation. J. Geom. Phys.164, 104159 (2021). 10.1016/j.geomphys.2021.104159 [DOI] [Google Scholar]
  • 86.Manafian, J. Multiple rogue wave solutions and the linear superposition principle for a (3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq-like equation arising in energy distributions. Math. Method Appl. Sci.44, 14079–93 (2021). 10.1002/mma.7676 [DOI] [Google Scholar]
  • 87.Ullah, M. S., Roshid, H. O. & Ali, M. Z. New wave behaviors and stability analysis for the (2+1)-dimensional Zoomeron model. Opt. Quant. Electron.56, 240 (2024). 10.1007/s11082-023-05804-7 [DOI] [Google Scholar]
  • 88.Ullah, M. S., Roshid, H. O. & Ali, M. Z. New wave behaviors of the Fokas–Lenells model using three integration techniques. PLoS One18(9), e0291071 (2023). 10.1371/journal.pone.0291071 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Ullah, M. S., Ali, M. Z. & Roshid, H. O. Bifurcation analysis and new waveforms to the first fractional WBBM equation. Sci. Rep.14, 11907 (2024). 10.1038/s41598-024-62754-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Ullah, M. S., Ali, M. Z. & Roshid, H. O. Bifurcation analysis and new waveforms to the fractional KFG equation. Partial Differ. Equ. Appl. Math.10, 100716 (2024). 10.1016/j.padiff.2024.100716 [DOI] [Google Scholar]
  • 91.Ullah, M. S. Interaction solution to the (3+1)-D negative-order KdV first structure. Partial Differ. Equ. Appl. Math.8, 100566 (2023). 10.1016/j.padiff.2023.100566 [DOI] [Google Scholar]
  • 92.Ullah, M. S., Ahmed, O. & Mahbub, Md. A. Collision phenomena between lump and kink wave solutions to a (3+1)-dimensional Jimbo–Miwa-like model. Partial Differ. Equ. Appl. Math.5, 100324 (2022). 10.1016/j.padiff.2022.100324 [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.


Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES