Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Aug 15;294(Pt 1):31–34. doi: 10.1042/bj2940031

Structural alteration of mouse P450coh by mutation of glycine-207 to proline: spin equilibrium, enzyme kinetics, and heat sensitivity.

R O Juvonen 1, M Iwasaki 1, T Sueyoshi 1, M Negishi 1
PMCID: PMC1134561  PMID: 8395817

Abstract

Mouse cytochrome P450coh is a high-spin haem protein which specifically catalyses coumarin 7-hydroxylase activity. A mutation of Gly-207 to Pro shifts the P450coh completely to the low-spin form, indicating that the sixth axial position of the haem is hexaco-ordinated with a water molecule in the mutant G207P. Moreover, the G207P mutation increases the Km value for coumarin 7-hydroxylase activity 100-fold and the Kd value for coumarin binding 200-fold. Conversely, the mutation decreases the Ki and Kd values 10- and 20-fold respectively when testosterone, a larger molecule, is used as a substrate. The results, therefore, are consistent with an idea that the substrate pocket may be larger in the mutant G207P than in the wild-type cytochrome P-450. A Gly-207 to Ala mutation (G207A) of P450coh (G207A), on the other hand, affects neither the spectral nor the enzymic properties of P450coh. Pro-207, through cis/trans isomerization or formation of a kink, may confer on the G207P a structural alteration of its substrate-haem pocket. Our previous studies [Iwasaki, Juvonen, Lindberg and Negishi (1991) J. Biol. Chem. 266, 3380-3382; Juvonen, Iwasaki and Negishi (1991) J. Biol. Chem. 266, 16431-16435] show that the residue at position 209 in P450coh resides close to the sixth axial position of the haem, and the spin equilibrium of the cytochrome P-450 shifts toward the high-spin state as residue 209 becomes more hydrophobic and larger. A Gly-207 to Pro mutation, therefore, results in the creation of a larger substrate pocket in the mutant cytochrome P-450 by altering the protein structure around residue 209 so that a water molecule and testosterone can be accommodated.

Full text

PDF
31

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitio A. A simple and sensitive assay of 7-ethoxycoumarin deethylation. Anal Biochem. 1978 Apr;85(2):488–491. doi: 10.1016/0003-2697(78)90245-2. [DOI] [PubMed] [Google Scholar]
  2. Alber T., Bell J. A., Sun D. P., Nicholson H., Wozniak J. A., Cook S., Matthews B. W. Replacements of Pro86 in phage T4 lysozyme extend an alpha-helix but do not alter protein stability. Science. 1988 Feb 5;239(4840):631–635. doi: 10.1126/science.3277275. [DOI] [PubMed] [Google Scholar]
  3. Brandts J. F., Halvorson H. R., Brennan M. Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry. 1975 Nov 4;14(22):4953–4963. doi: 10.1021/bi00693a026. [DOI] [PubMed] [Google Scholar]
  4. Consler T. G., Tsolas O., Kaback H. R. Role of proline residues in the structure and function of a membrane transport protein. Biochemistry. 1991 Feb 5;30(5):1291–1298. doi: 10.1021/bi00219a019. [DOI] [PubMed] [Google Scholar]
  5. Dawson J. H., Andersson L. A., Sono M. Spectroscopic investigations of ferric cytochrome P-450-CAM ligand complexes. Identification of the ligand trans to cysteinate in the native enzyme. J Biol Chem. 1982 Apr 10;257(7):3606–3617. [PubMed] [Google Scholar]
  6. Gotoh O. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem. 1992 Jan 5;267(1):83–90. [PubMed] [Google Scholar]
  7. Iwasaki M., Darden T. A., Pedersen L. G., Davis D. G., Juvonen R. O., Sueyoshi T., Negishi M. Engineering mouse P450coh to a novel corticosterone 15 alpha-hydroxylase and modeling steroid-binding orientation in the substrate pocket. J Biol Chem. 1993 Jan 15;268(2):759–762. [PubMed] [Google Scholar]
  8. Iwasaki M., Juvonen R., Lindberg R., Negishi M. Alteration of high and low spin equilibrium by a single mutation of amino acid 209 in mouse cytochromes P450. J Biol Chem. 1991 Feb 25;266(6):3380–3382. [PubMed] [Google Scholar]
  9. Juvonen R. O., Iwasaki M., Negishi M. Structural function of residue-209 in coumarin 7-hydroxylase (P450coh). Enzyme-kinetic studies and site-directed mutagenesis. J Biol Chem. 1991 Sep 5;266(25):16431–16435. [PubMed] [Google Scholar]
  10. Kedzie K. M., Balfour C. A., Escobar G. Y., Grimm S. W., He Y. A., Pepperl D. J., Regan J. W., Stevens J. C., Halpert J. R. Molecular basis for a functionally unique cytochrome P450IIB1 variant. J Biol Chem. 1991 Nov 25;266(33):22515–22521. [PubMed] [Google Scholar]
  11. Lindberg R. L., Negishi M. Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature. 1989 Jun 22;339(6226):632–634. doi: 10.1038/339632a0. [DOI] [PubMed] [Google Scholar]
  12. Nelson D. R., Strobel H. W. Secondary structure prediction of 52 membrane-bound cytochromes P450 shows a strong structural similarity to P450cam. Biochemistry. 1989 Jan 24;28(2):656–660. doi: 10.1021/bi00428a036. [DOI] [PubMed] [Google Scholar]
  13. O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
  14. Oeda K., Sakaki T., Ohkawa H. Expression of rat liver cytochrome P-450MC cDNA in Saccharomyces cerevisiae. DNA. 1985 Jun;4(3):203–210. doi: 10.1089/dna.1985.4.203. [DOI] [PubMed] [Google Scholar]
  15. Padmanabhan S., Marqusee S., Ridgeway T., Laue T. M., Baldwin R. L. Relative helix-forming tendencies of nonpolar amino acids. Nature. 1990 Mar 15;344(6263):268–270. doi: 10.1038/344268a0. [DOI] [PubMed] [Google Scholar]
  16. Piela L., Némethy G., Scheraga H. A. Proline-induced constraints in alpha-helices. Biopolymers. 1987 Sep;26(9):1587–1600. doi: 10.1002/bip.360260910. [DOI] [PubMed] [Google Scholar]
  17. Poulos T. L., Finzel B. C., Howard A. J. High-resolution crystal structure of cytochrome P450cam. J Mol Biol. 1987 Jun 5;195(3):687–700. doi: 10.1016/0022-2836(87)90190-2. [DOI] [PubMed] [Google Scholar]
  18. Poulos T. L. Modeling of mammalian P450s on basis of P450cam X-ray structure. Methods Enzymol. 1991;206:11–30. doi: 10.1016/0076-6879(91)06073-c. [DOI] [PubMed] [Google Scholar]
  19. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  20. Strehlow K. G., Baldwin R. L. Effect of the substitution Ala----Gly at each of five residue positions in the C-peptide helix. Biochemistry. 1989 Mar 7;28(5):2130–2133. doi: 10.1021/bi00431a025. [DOI] [PubMed] [Google Scholar]
  21. Strehlow K. G., Robertson A. D., Baldwin R. L. Proline for alanine substitutions in the C-peptide helix of ribonuclease A. Biochemistry. 1991 Jun 11;30(23):5810–5814. doi: 10.1021/bi00237a026. [DOI] [PubMed] [Google Scholar]
  22. White R. E., Coon M. J. Heme ligand replacement reactions of cytochrome P-450. Characterization of the bonding atom of the axial ligand trans to thiolate as oxygen. J Biol Chem. 1982 Mar 25;257(6):3073–3083. [PubMed] [Google Scholar]
  23. Yoshida Y., Imai Y., Hashimoto-Yutsudo C. Spectrophotometric examination of exogenous-ligand complexes of ferric cytochrome P-450. Characterization of the axial ligand trans to thiolate in the native ferric low-spin form. J Biochem. 1982 May;91(5):1651–1659. doi: 10.1093/oxfordjournals.jbchem.a133856. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES