Abstract
The activity of the arginine-citrulline cycle was investigated in macrophages from the spontaneous immunologically mediated diabetic BB rat. Peritoneal macrophages were prepared from male diabetes-prone (BBdp), diabetic (BBd) and age-matched non-diabetes-prone (BBn) rats. Cells were incubated at 37 degrees C for 2 h in Krebs-Henseleit bicarbonate buffer containing 0.5 mM L-arginine, 0.1 mM L-[ureido-14C]citrulline and 5 mM D-glucose to measure the activity of the arginine-citrulline cycle. The uptakes of citrulline and arginine by macrophages were measured during a 5 min incubation period with L-[ureido-14C]citrulline and L-[2,3-3H] arginine respectively. The production of NO3- (the major stable oxidation product of NO) increased (P < 0.01) by 112% and 151% in 75-day-old BBdp and 115-day-old BBd macrophages respectively, compared with age-matched BBn cells. The conversion of [14C]citrulline into [14C]arginine increased (P < 0.01) by 704%, 892% and 904% in 50- and 75-day-old BBdp and 115-day-old BBd macrophages respectively, compared with age-matched BBn cells. The enhanced NO synthesis in BBdp and BBd macrophages was associated with a 25-35% increase in the uptake of L-arginine. However, there were no differences in the uptake of citrulline between BBdp or BBd macrophages and age-matched BBn cells. Our results demonstrate for the first time the activation of the arginine-citrulline cycle in macrophages in an autoimmune condition. The inherent increase in the recycling of L-citrulline to L-arginine in BBdp and BBd macrophages may reflect an innate metabolic disorder in these cells. This increased L-arginine synthesis from L-citrulline may play a role in sustaining a sufficient intracellular L-arginine concentration for prolonged generation of NO in BBdp and BBd macrophages. A role for NO in the autoimmune destruction of pancreatic beta-cells in insulin-dependent diabetes mellitus warrants further investigation.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albina J. E., Mills C. D., Barbul A., Thirkill C. E., Henry W. L., Jr, Mastrofrancesco B., Caldwell M. D. Arginine metabolism in wounds. Am J Physiol. 1988 Apr;254(4 Pt 1):E459–E467. doi: 10.1152/ajpendo.1988.254.4.E459. [DOI] [PubMed] [Google Scholar]
- Bogle R. G., Baydoun A. R., Pearson J. D., Moncada S., Mann G. E. L-arginine transport is increased in macrophages generating nitric oxide. Biochem J. 1992 May 15;284(Pt 1):15–18. doi: 10.1042/bj2840015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bone A. J., Walker R., Varey A. M., Cooke A., Baird J. D. Effect of cyclosporin on pancreatic events and development of diabetes in BB/Edinburgh rats. Diabetes. 1990 Apr;39(4):508–514. doi: 10.2337/diab.39.4.508. [DOI] [PubMed] [Google Scholar]
- Bredt D. S., Hwang P. M., Snyder S. H. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature. 1990 Oct 25;347(6295):768–770. doi: 10.1038/347768a0. [DOI] [PubMed] [Google Scholar]
- Burkart V., Imai Y., Kallmann B., Kolb H. Cyclosporin A protects pancreatic islet cells from nitric oxide-dependent macrophage cytotoxicity. FEBS Lett. 1992 Nov 16;313(1):56–58. doi: 10.1016/0014-5793(92)81183-m. [DOI] [PubMed] [Google Scholar]
- Corbett J. A., McDaniel M. L. Does nitric oxide mediate autoimmune destruction of beta-cells? Possible therapeutic interventions in IDDM. Diabetes. 1992 Aug;41(8):897–903. doi: 10.2337/diab.41.8.897. [DOI] [PubMed] [Google Scholar]
- Culotta E., Koshland D. E., Jr NO news is good news. Science. 1992 Dec 18;258(5090):1862–1865. doi: 10.1126/science.1361684. [DOI] [PubMed] [Google Scholar]
- Granger D. L., Hibbs J. B., Jr, Perfect J. R., Durack D. T. Metabolic fate of L-arginine in relation to microbiostatic capability of murine macrophages. J Clin Invest. 1990 Jan;85(1):264–273. doi: 10.1172/JCI114422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hibbs J. B., Jr, Taintor R. R., Vavrin Z., Rachlin E. M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988 Nov 30;157(1):87–94. doi: 10.1016/s0006-291x(88)80015-9. [DOI] [PubMed] [Google Scholar]
- Ihm S. H., Lee K. U., Yoon J. W. Studies on autoimmunity for initiation of beta-cell destruction. VII. Evidence for antigenic changes on beta-cells leading to autoimmune destruction of beta-cells in BB rats. Diabetes. 1991 Feb;40(2):269–274. doi: 10.2337/diab.40.2.269. [DOI] [PubMed] [Google Scholar]
- Kolb H., Kolb-Bachofen V. Nitric oxide: a pathogenetic factor in autoimmunity. Immunol Today. 1992 May;13(5):157–160. doi: 10.1016/0167-5699(92)90118-Q. [DOI] [PubMed] [Google Scholar]
- Kröncke K. D., Kolb-Bachofen V., Berschick B., Burkart V., Kolb H. Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation. Biochem Biophys Res Commun. 1991 Mar 29;175(3):752–758. doi: 10.1016/0006-291x(91)91630-u. [DOI] [PubMed] [Google Scholar]
- Lee K. U., Kim M. K., Amano K., Pak C. Y., Jaworski M. A., Mehta J. G., Yoon J. W. Preferential infiltration of macrophages during early stages of insulitis in diabetes-prone BB rats. Diabetes. 1988 Aug;37(8):1053–1058. doi: 10.2337/diab.37.8.1053. [DOI] [PubMed] [Google Scholar]
- Logothetopoulos J., Valiquette N., Madura E., Cvet D. The onset and progression of pancreatic insulitis in the overt, spontaneously diabetic, young adult BB rat studied by pancreatic biopsy. Diabetes. 1984 Jan;33(1):33–36. doi: 10.2337/diab.33.1.33. [DOI] [PubMed] [Google Scholar]
- Lukic M. L., Stosic-Grujicic S., Ostojic N., Chan W. L., Liew F. Y. Inhibition of nitric oxide generation affects the induction of diabetes by streptozocin in mice. Biochem Biophys Res Commun. 1991 Aug 15;178(3):913–920. doi: 10.1016/0006-291x(91)90978-g. [DOI] [PubMed] [Google Scholar]
- Marliss E. B., Nakhooda A. F., Poussier P., Sima A. A. The diabetic syndrome of the 'BB' Wistar rat: possible relevance to type 1 (insulin-dependent) diabetes in man. Diabetologia. 1982 Apr;22(4):225–232. doi: 10.1007/BF00281296. [DOI] [PubMed] [Google Scholar]
- Moncada S., Higgs E. A. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest. 1991 Aug;21(4):361–374. doi: 10.1111/j.1365-2362.1991.tb01383.x. [DOI] [PubMed] [Google Scholar]
- Mülsch A., Vanin A., Mordvintcev P., Hauschildt S., Busse R. NO accounts completely for the oxygenated nitrogen species generated by enzymic L-arginine oxygenation. Biochem J. 1992 Dec 1;288(Pt 2):597–603. doi: 10.1042/bj2880597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OREN R., FARNHAM A. E., SAITO K., MILOFSKY E., KARNOVSKY M. L. Metabolic patterns in three types of phagocytizing cells. J Cell Biol. 1963 Jun;17:487–501. doi: 10.1083/jcb.17.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oschilewski U., Kiesel U., Kolb H. Administration of silica prevents diabetes in BB-rats. Diabetes. 1985 Feb;34(2):197–199. doi: 10.2337/diab.34.2.197. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
- Parfrey N. A., Prud'homme G. J., Colle E., Fuks A., Seemayer T. A., Guttmann R. D., Ono S. J. Immunologic and genetic studies of diabetes in the BB rat. Crit Rev Immunol. 1989;9(1):45–65. [PubMed] [Google Scholar]
- Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991 Mar 5;266(7):4244–4250. [PubMed] [Google Scholar]
- Rothe H., Fehsel K., Kolb H. Tumour necrosis factor alpha production is upregulated in diabetes prone BB rats. Diabetologia. 1990 Sep;33(9):573–575. doi: 10.1007/BF00404147. [DOI] [PubMed] [Google Scholar]
- Stamler J. S., Singel D. J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992 Dec 18;258(5090):1898–1902. doi: 10.1126/science.1281928. [DOI] [PubMed] [Google Scholar]
- Stuehr D. J., Griffith O. W. Mammalian nitric oxide synthases. Adv Enzymol Relat Areas Mol Biol. 1992;65:287–346. doi: 10.1002/9780470123119.ch8. [DOI] [PubMed] [Google Scholar]
- Walker R., Bone A. J., Cooke A., Baird J. D. Distinct macrophage subpopulations in pancreas of prediabetic BB/E rats. Possible role for macrophages in pathogenesis of IDDM. Diabetes. 1988 Sep;37(9):1301–1304. doi: 10.2337/diab.37.9.1301. [DOI] [PubMed] [Google Scholar]
- Wu G. Y., Brosnan J. T. Macrophages can convert citrulline into arginine. Biochem J. 1992 Jan 1;281(Pt 1):45–48. doi: 10.1042/bj2810045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu G. Y., Field C. J., Marliss E. B. Glucose and glutamine metabolism in rat macrophages: enhanced glycolysis and unaltered glutaminolysis in spontaneously diabetic BB rats. Biochim Biophys Acta. 1991 Dec 6;1115(2):166–173. doi: 10.1016/0304-4165(91)90026-d. [DOI] [PubMed] [Google Scholar]
- Wu G. Y., Thompson J. R., Baracos V. E. Glutamine metabolism in skeletal muscles from the broiler chick (Gallus domesticus) and the laboratory rat (Rattus norvegicus) Biochem J. 1991 Mar 15;274(Pt 3):769–774. doi: 10.1042/bj2740769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu G., Marliss E. B. Enhanced glucose metabolism and respiratory burst in peritoneal macrophages from spontaneously diabetic BB rats. Diabetes. 1993 Apr;42(4):520–529. doi: 10.2337/diab.42.4.520. [DOI] [PubMed] [Google Scholar]