Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Nov 1;295(Pt 3):663–669. doi: 10.1042/bj2950663

CoA and fatty acyl-CoA derivatives mobilize calcium from a liver reticular pool.

R Fulceri 1, A Gamberucci 1, G Bellomo 1, R Giunti 1, A Benedetti 1
PMCID: PMC1134610  PMID: 8240274

Abstract

The effect of CoA and fatty acyl-CoA esters on Ca2+ fluxes has been studied in isolated liver microsomes and in digitonin-permeabilized hepatocytes. When microsomes were loaded with increasing concentrations of Ca2+ (6-29 nmol/mg of protein), the extent to which CoA and palmitoyl-CoA released Ca2+ increased. At 23 nmol of Ca2+/mg of protein, half-maximal [CoA] and [palmitoyl-CoA] were 35 and 50 microM respectively. Under conditions of minimal Ca2+ loading, net release of Ca2+ was absent, but Ca2+ translocation from a CoA-sensitive to a CoA-insensitive pool took place. The effect of CoA required the presence of fatty acids, probably to form fatty acyl esters. In permeabilized hepatocytes, the pool(s) mobilized by CoA (or by palmitoyl-CoA) appeared to be different from that mobilized by Ins(1,4,5)P3.

Full text

PDF
663

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agius L., Wright P. D., Alberti K. G. Carnitine acyltransferases and acyl-CoA hydrolases in human and rat liver. Clin Sci (Lond) 1987 Jul;73(1):3–10. doi: 10.1042/cs0730003. [DOI] [PubMed] [Google Scholar]
  2. Bell R. M., Coleman R. A. Enzymes of glycerolipid synthesis in eukaryotes. Annu Rev Biochem. 1980;49:459–487. doi: 10.1146/annurev.bi.49.070180.002331. [DOI] [PubMed] [Google Scholar]
  3. Benedetti A., Fulceri R., Comporti M. Calcium sequestration activity in rat liver microsomes. Evidence for a cooperation of calcium transport with glucose-6-phosphatase. Biochim Biophys Acta. 1985 Jun 27;816(2):267–277. doi: 10.1016/0005-2736(85)90494-8. [DOI] [PubMed] [Google Scholar]
  4. Benedetti A., Fulceri R., Romani A., Comporti M. MgATP-dependent glucose 6-phosphate-stimulated Ca2+ accumulation in liver microsomal fractions. Effects of inositol 1,4,5-trisphosphate and GTP. J Biol Chem. 1988 Mar 5;263(7):3466–3473. [PubMed] [Google Scholar]
  5. Bindoli A., Valente M., Cavallini L. Effects of palmitoyl coenzyme A on rat skeletal muscle sarcoplasmic reticulum. Int J Biochem. 1983;15(10):1219–1223. doi: 10.1016/0020-711x(83)90210-0. [DOI] [PubMed] [Google Scholar]
  6. Bronfman M., Morales M. N., Orellana A. Diacylglycerol activation of protein kinase C is modulated by long-chain acyl-CoA. Biochem Biophys Res Commun. 1988 May 16;152(3):987–992. doi: 10.1016/s0006-291x(88)80381-4. [DOI] [PubMed] [Google Scholar]
  7. Comerford J. G., Dawson A. P. Effects of CoA and acyl-CoAs on GTP-dependent Ca2+ release and vesicle fusion in rat liver microsomal vesicles. Biochem J. 1993 Jan 15;289(Pt 2):561–567. doi: 10.1042/bj2890561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Corkey B. E. Analysis of acyl-coenzyme A esters in biological samples. Methods Enzymol. 1988;166:55–70. doi: 10.1016/s0076-6879(88)66011-3. [DOI] [PubMed] [Google Scholar]
  9. Deeney J. T., Tornheim K., Korchak H. M., Prentki M., Corkey B. E. Acyl-CoA esters modulate intracellular Ca2+ handling by permeabilized clonal pancreatic beta-cells. J Biol Chem. 1992 Oct 5;267(28):19840–19845. [PubMed] [Google Scholar]
  10. Fulceri R., Bellomo G., Gamberucci A., Benedetti A. MgATP-dependent accumulation of calcium ions and inorganic phosphate in a liver reticular pool. Biochem J. 1990 Dec 1;272(2):549–552. doi: 10.1042/bj2720549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fulceri R., Bellomo G., Gamberucci A., Romani A., Benedetti A. Physiological concentrations of inorganic phosphate affect MgATP-dependent Ca2+ storage and inositol trisphosphate-induced Ca2+ efflux in microsomal vesicles from non-hepatic cells. Biochem J. 1993 Jan 1;289(Pt 1):299–306. doi: 10.1042/bj2890299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fulceri R., Bellomo G., Mirabelli F., Gamberucci A., Benedetti A. Measurement of mitochondrial and non-mitochondrial Ca2+ in isolated intact hepatocytes: a critical re-evaluation of the use of mitochondrial inhibitors. Cell Calcium. 1991 Jun;12(6):431–439. doi: 10.1016/0143-4160(91)90069-q. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Li Q. L., Yamamoto N., Inoue A., Morisawa S. Fatty acyl-CoAs are potent inhibitors of the nuclear thyroid hormone receptor in vitro. J Biochem. 1990 May;107(5):699–702. doi: 10.1093/oxfordjournals.jbchem.a123111. [DOI] [PubMed] [Google Scholar]
  15. Majumdar S., Rossi M. W., Fujiki T., Phillips W. A., Disa S., Queen C. F., Johnston R. B., Jr, Rosen O. M., Corkey B. E., Korchak H. M. Protein kinase C isotypes and signaling in neutrophils. Differential substrate specificities of a translocatable calcium- and phospholipid-dependent beta-protein kinase C and a phospholipid-dependent protein kinase which is inhibited by long chain fatty acyl coenzyme A. J Biol Chem. 1991 May 15;266(14):9285–9294. [PubMed] [Google Scholar]
  16. Michelangeli F. Fluo-3 an ideal calcium indicator for measuring calcium fluxes in SR and ER. Biochem Soc Trans. 1991 Apr;19(2):183S–183S. doi: 10.1042/bst019183s. [DOI] [PubMed] [Google Scholar]
  17. Moldéus P., Högberg J., Orrenius S. Isolation and use of liver cells. Methods Enzymol. 1978;52:60–71. doi: 10.1016/s0076-6879(78)52006-5. [DOI] [PubMed] [Google Scholar]
  18. Olson E. N., Towler D. A., Glaser L. Specificity of fatty acid acylation of cellular proteins. J Biol Chem. 1985 Mar 25;260(6):3784–3790. [PubMed] [Google Scholar]
  19. Parrilla R., Jimenez M. I., Ayuso-Parrilla M. S. Cellular redistribution of metabolites during glucagon and insulin control of gluconeogenesis in the isolated perfused rat liver. Arch Biochem Biophys. 1976 May;174(1):1–12. doi: 10.1016/0003-9861(76)90317-9. [DOI] [PubMed] [Google Scholar]
  20. Pfanner N., Orci L., Glick B. S., Amherdt M., Arden S. R., Malhotra V., Rothman J. E. Fatty acyl-coenzyme A is required for budding of transport vesicles from Golgi cisternae. Cell. 1989 Oct 6;59(1):95–102. doi: 10.1016/0092-8674(89)90872-6. [DOI] [PubMed] [Google Scholar]
  21. Prentki M., Vischer S., Glennon M. C., Regazzi R., Deeney J. T., Corkey B. E. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem. 1992 Mar 25;267(9):5802–5810. [PubMed] [Google Scholar]
  22. Rothman J. E., Orci L. Molecular dissection of the secretory pathway. Nature. 1992 Jan 30;355(6359):409–415. doi: 10.1038/355409a0. [DOI] [PubMed] [Google Scholar]
  23. Schmidt M. F. Fatty acylation of proteins. Biochim Biophys Acta. 1989 Dec 6;988(3):411–426. doi: 10.1016/0304-4157(89)90013-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Siess E. A., Brocks D. G., Lattke H. K., Wieland O. H. Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate. Biochem J. 1977 Aug 15;166(2):225–235. doi: 10.1042/bj1660225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Siess E. A., Kientsch-Engel R. I., Fahimi F. M., Wieland O. H. Possible role of Pi supply in mitochondrial actions of glucagon. Eur J Biochem. 1984 Jun 15;141(3):543–548. doi: 10.1111/j.1432-1033.1984.tb08227.x. [DOI] [PubMed] [Google Scholar]
  26. Simonis S., Cullen S. E. Fatty acylation of murine Ia alpha, beta, and invariant chains. J Immunol. 1986 Apr 15;136(8):2962–2967. [PubMed] [Google Scholar]
  27. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tippett P. S., Neet K. E. An allosteric model for the inhibition of glucokinase by long chain acyl coenzyme A. J Biol Chem. 1982 Nov 10;257(21):12846–12852. [PubMed] [Google Scholar]
  29. Tippett P. S., Neet K. E. Specific inhibition of glucokinase by long chain acyl coenzymes A below the critical micelle concentration. J Biol Chem. 1982 Nov 10;257(21):12839–12845. [PubMed] [Google Scholar]
  30. Tsien R. Y., Rink T. J. Ca2+-selective electrodes: a novel PVC-gelled neutral carrier mixture compared with other currently available sensors. J Neurosci Methods. 1981 Jun;4(1):73–86. doi: 10.1016/0165-0270(81)90020-0. [DOI] [PubMed] [Google Scholar]
  31. Veerkamp J. H., Peeters R. A., Maatman R. G. Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochim Biophys Acta. 1991 Jan 4;1081(1):1–24. doi: 10.1016/0005-2760(91)90244-c. [DOI] [PubMed] [Google Scholar]
  32. Williamson J. R., Scholz R., Browning E. T. Control mechanisms of gluconeogenesis and ketogenesis. II. Interactions between fatty acid oxidation and the citric acid cycle in perfused rat liver. J Biol Chem. 1969 Sep 10;244(17):4617–4627. [PubMed] [Google Scholar]
  33. Woldegiorgis G., Yousufzai S. Y., Shrago E. Studies on the interaction of palmitoyl coenzyme A with the adenine nucleotide translocase. J Biol Chem. 1982 Dec 25;257(24):14783–14787. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES