Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Nov 1;295(Pt 3):713–718. doi: 10.1042/bj2950713

Met-8 of the beta 1-bungarotoxin phospholipase A2 subunit is essential for the phospholipase A2-independent neurotoxic effect.

S T Chu 1, C C Chu 1, C C Tseng 1, Y H Chen 1
PMCID: PMC1134618  PMID: 8240282

Abstract

beta 1-Bungarotoxin consists of a phospholipase A2 subunit and a non-phospholipase A2 subunit. The toxin was oxidized with a 100-fold molar excess of chloramine T with respect to the methionine content of the protein in 0.1 M Tris/HCl at pH 8.5 and at room temperature. Reactivities of the two methionine (Met-6 and Met-8 of the phospholipase A2 subunit), five histidine, 14 tyrosine and one tryptophan residues of one toxin molecule with chloramine T were assessed from the change in intrinsic fluorescence and amino acid composition of the protein. Met-8 and one tyrosine on the phospholipase A2 subunit and less than one histidine were oxidized, while Met-6 remained intact after 30 min of reaction. One histidine and approx. two tyrosine residues were oxidized when both methionine residues were oxidized after 90 min of reaction. The sole tryptophan was oxidized slightly throughout the reaction. The chloramine T oxidation did not destroy the two Ca(2+)-binding domains, though it modified the toxin to become less effective at binding Ca2+. The modified toxin obtained after 30 or 90 min reaction time retained 65% or 40% of the phospholipase A2 activity of the parent toxin, but both were not lethal to mice and showed a very weak ability to induce the indirectly evoked contraction of chick biventer cervicis muscle. It is suggested that Met-8 may play an important role in the phospholipase A2-independent interaction with the nerve terminal membrane during the neurotoxic effect of beta 1-bungarotoxin.

Full text

PDF
713

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowen B., Steinberg J., Laemmli U. K., Weintraub H. The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res. 1980 Jan 11;8(1):1–20. doi: 10.1093/nar/8.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caratsch C. G., Maranda B., Miledi R., Strong P. N. A further study of the phospholipase-independent action of beta-bungarotoxin at frog end-plates. J Physiol. 1981;319:179–191. doi: 10.1113/jphysiol.1981.sp013900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang C. C. Neurotoxins with phospholipase A2 activity in snake venoms. Proc Natl Sci Counc Repub China B. 1985 Apr;9(2):126–142. [PubMed] [Google Scholar]
  4. Chang L. S., Yang C. C. Role of the N-terminal region of the A chain in beta 1-bungarotoxin from the venom of Bungarus multicinctus (Taiwan-banded krait). J Protein Chem. 1988 Dec;7(6):713–727. doi: 10.1007/BF01025579. [DOI] [PubMed] [Google Scholar]
  5. Chen Y. H., Tai J. C., Huang W. J., Lai M. Z., Hung M. C., Lai M. D., Yang J. T. Role of aromatic residues in the structure-function relationship of alpha-bungarotoxin. Biochemistry. 1982 May 25;21(11):2592–2600. doi: 10.1021/bi00540a003. [DOI] [PubMed] [Google Scholar]
  6. Chu S. T., Chen Y. H. Role of the N-terminal region of phospholipase A2 subunit of beta 1-bungarotoxin in the toxin-Ca2+ complex-formation. Biochem J. 1991 Sep 1;278(Pt 2):481–486. doi: 10.1042/bj2780481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chu S. T., Chen Y. H. The intrinsic tryptophan fluorescence of beta 1-bungarotoxin and the Ca2+-binding domains of the toxin as probed with Tb3+ luminescence. Biochem J. 1989 Sep 15;262(3):773–779. doi: 10.1042/bj2620773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dijkstra B. W., Renetseder R., Kalk K. H., Hol W. G., Drenth J. Structure of porcine pancreatic phospholipase A2 at 2.6 A resolution and comparison with bovine phospholipase A2. J Mol Biol. 1983 Jul 25;168(1):163–179. doi: 10.1016/s0022-2836(83)80328-3. [DOI] [PubMed] [Google Scholar]
  9. Dufton M. J. Proteinase inhibitors and dendrotoxins. Sequence classification, structural prediction and structure/activity. Eur J Biochem. 1985 Dec 16;153(3):647–654. doi: 10.1111/j.1432-1033.1985.tb09349.x. [DOI] [PubMed] [Google Scholar]
  10. Epstein M., Levitzki A., Reuben J. Binding of lanthanides and of divalent metal ions to porcine trypsin. Biochemistry. 1974 Apr 9;13(8):1777–1782. doi: 10.1021/bi00705a034. [DOI] [PubMed] [Google Scholar]
  11. GROSS E., WITKOP B. Nonenzymatic cleavage of peptide bonds: the methionine residues in bovine pancreatic ribonuclease. J Biol Chem. 1962 Jun;237:1856–1860. [PubMed] [Google Scholar]
  12. Harvey A. L., Karlsson E. Protease inhibitor homologues from mamba venoms: facilitation of acetylcholine release and interactions with prejunctional blocking toxins. Br J Pharmacol. 1982 Sep;77(1):153–161. doi: 10.1111/j.1476-5381.1982.tb09281.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keith C., Feldman D. S., Deganello S., Glick J., Ward K. B., Jones E. O., Sigler P. B. The 2.5 A crystal structure of a dimeric phospholipase A2 from the venom of Crotalus atrox. J Biol Chem. 1981 Aug 25;256(16):8602–8607. [PubMed] [Google Scholar]
  14. Kini R. M., Evans H. J. Structure-function relationships of phospholipases. The anticoagulant region of phospholipases A2. J Biol Chem. 1987 Oct 25;262(30):14402–14407. [PubMed] [Google Scholar]
  15. Kondo K., Toda H., Narita K. Characterization of phospholipase A activity of beta1-bungarotoxin from Bungarus multicinctus venom. II. Identification of the histidine residue of beta1-bungarotoxin modified by p-bromophenacyl bromide. J Biochem. 1978 Nov;84(5):1301–1308. doi: 10.1093/oxfordjournals.jbchem.a132249. [DOI] [PubMed] [Google Scholar]
  16. Lin W. Z., Chu S. T., Chen Y. H. Optical activity and conformation of beta-bungarotoxin in solution. Proc Natl Sci Counc Repub China B. 1984 Apr;8(2):113–118. [PubMed] [Google Scholar]
  17. Rehm H., Betz H. Binding of beta-bungarotoxin to synaptic membrane fractions of chick brain. J Biol Chem. 1982 Sep 10;257(17):10015–10022. [PubMed] [Google Scholar]
  18. Rosenberg P., Ghassemi A., Condrea E., Dhillon D., Yang C. C. Do chemical modifications dissociate between the enzymatic and pharmacological activities of beta bungarotoxin and notexin? Toxicon. 1989;27(2):137–159. doi: 10.1016/0041-0101(89)90128-1. [DOI] [PubMed] [Google Scholar]
  19. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  20. Scott V. E., Parcej D. N., Keen J. N., Findlay J. B., Dolly J. O. Alpha-dendrotoxin acceptor from bovine brain is a K+ channel protein. Evidence from the N-terminal sequence of its larger subunit. J Biol Chem. 1990 Nov 25;265(33):20094–20097. [PubMed] [Google Scholar]
  21. Shechter Y., Burstein Y., Patchornik A. Selective oxidation of methionine residues in proteins. Biochemistry. 1975 Oct 7;14(20):4497–4503. doi: 10.1021/bi00691a025. [DOI] [PubMed] [Google Scholar]
  22. Tsai I. H., Liu H. C., Chang T. Toxicity domain in presynaptically toxic phospholipase A2 of snake venom. Biochim Biophys Acta. 1987 Nov 5;916(1):94–99. doi: 10.1016/0167-4838(87)90215-9. [DOI] [PubMed] [Google Scholar]
  23. Tsugita A., Scheffler J. J. A rapid method for acid hydrolysis of protein with a mixture of trifluoroacetic acid and hydrochloric acid. Eur J Biochem. 1982 Jun;124(3):585–588. doi: 10.1111/j.1432-1033.1982.tb06634.x. [DOI] [PubMed] [Google Scholar]
  24. Tzeng M. C., Hseu M. J., Yen C. H. Taipoxin-binding protein on synaptic membranes: identification by affinity labeling. Biochem Biophys Res Commun. 1989 Dec 15;165(2):689–694. doi: 10.1016/s0006-291x(89)80021-x. [DOI] [PubMed] [Google Scholar]
  25. White S. P., Scott D. L., Otwinowski Z., Gelb M. H., Sigler P. B. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. Science. 1990 Dec 14;250(4987):1560–1563. doi: 10.1126/science.2274787. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES