Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Nov 1;295(Pt 3):827–831. doi: 10.1042/bj2950827

Structural features responsible for kinetic thermal stability of a carboxypeptidase from the archaebacterium Sulfolobus solfataricus.

A Villa 1, L Zecca 1, P Fusi 1, S Colombo 1, G Tedeschi 1, P Tortora 1
PMCID: PMC1134636  PMID: 8240298

Abstract

Investigations were performed on the structural features responsible for kinetic thermal stability of a thermostable carboxypeptidase from the thermoacidophilic archaebacterium Sulfolobus solfataricus which had been purified previously and identified as a zinc metalloprotease [Colombo, D'Auria, Fusi, Zecca, Raia and Tortora (1992) Eur. J. Biochem. 206, 349-357]. Removal of Zn2+ by dialysis led to reversible activity loss, which was promptly restored by addition of 80 microM ZnCl2 to the assay mixture. For the first-order irreversible thermal inactivation the metal-depleted enzyme showed an activation energy value of 205.6 kJ.mol-1, which is considerably lower than that of the holoenzyme (494.4 kJ.mol-1). The values of activation free energies, enthalpies and entropies also dropped with metal removal. Thermal inactivation of the apoenzyme was very quick at 80 degrees C, whereas the holoenzyme was stable at the same temperature. These findings suggest a major stabilizing role for the bivalent cation. Chaotropic salts strongly destabilized the holoenzyme, showing that hydrophobic interactions are involved in maintaining the native conformation of the enzyme. However, the inactivation rate was also increased by sodium sulphate, acetate and chloride, which are not chaotropes, indicating that one or more salt bridges concur in stabilizing the active enzyme. Furthermore, at the extremes of the pH-stability curve, NaCl did not affect the inactivation rate, confirming the stabilizing role of intramolecular ionic bonds, as a pH-dependent decrease in stability is likely to occur from breaking of salt bridges involved in maintaining the native conformation of the protein.

Full text

PDF
827

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burlini N., Magnani P., Villa A., Macchi F., Tortora P., Guerritore A. A heat-stable serine proteinase from the extreme thermophilic archaebacterium Sulfolobus solfataricus. Biochim Biophys Acta. 1992 Aug 21;1122(3):283–292. doi: 10.1016/0167-4838(92)90406-4. [DOI] [PubMed] [Google Scholar]
  2. Colombo S., D'Auria S., Fusi P., Zecca L., Raia C. A., Tortora P. Purification and characterization of a thermostable carboxypeptidase from the extreme thermophilic archaebacterium Sulfolobus solfataricus. Eur J Biochem. 1992 Jun 1;206(2):349–357. doi: 10.1111/j.1432-1033.1992.tb16934.x. [DOI] [PubMed] [Google Scholar]
  3. Cowan D. A. Biotechnology of the Archaea. Trends Biotechnol. 1992 Sep;10(9):315–323. doi: 10.1016/0167-7799(92)90257-v. [DOI] [PubMed] [Google Scholar]
  4. Cowan D. A., Daniel R. M. Purification and some properties of an extracellular protease (caldolysin) from an extreme thermophile. Biochim Biophys Acta. 1982 Aug 10;705(3):293–305. doi: 10.1016/0167-4838(82)90251-5. [DOI] [PubMed] [Google Scholar]
  5. Cowan D. A., Smolenski K. A., Daniel R. M., Morgan H. W. An extremely thermostable extracellular proteinase from a strain of the archaebacterium Desulfurococcus growing at 88 degrees C. Biochem J. 1987 Oct 1;247(1):121–133. doi: 10.1042/bj2470121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Rosa M., Gambacorta A., Nicolaus B., Giardina P., Poerio E., Buonocore V. Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. Biochem J. 1984 Dec 1;224(2):407–414. doi: 10.1042/bj2240407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gusek T. W., Kinsella J. E. Purification and characterization of the heat-stable serine proteinase from Thermomonospora fusca YX. Biochem J. 1987 Sep 1;246(2):511–517. doi: 10.1042/bj2460511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hanner M., Redl B., Stöffler G. Isolation and characterization of an intracellular aminopeptidase from the extreme thermophilic archaebacterium Sulfolobus solfataricus. Biochim Biophys Acta. 1990 Feb 26;1033(2):148–153. doi: 10.1016/0304-4165(90)90005-h. [DOI] [PubMed] [Google Scholar]
  9. Hatefi Y., Hanstein W. G. Solubilization of particulate proteins and nonelectrolytes by chaotropic agents. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1129–1136. doi: 10.1073/pnas.62.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kester W. R., Matthews B. W. Comparison of the structures of carboxypeptidase A and thermolysin. J Biol Chem. 1977 Nov 10;252(21):7704–7710. [PubMed] [Google Scholar]
  11. Kristjansson M. M., Kinsella J. E. Alkaline serine proteinase from Thermomonospora fusca YX. Stability to heat and denaturants. Biochem J. 1990 Aug 15;270(1):51–55. doi: 10.1042/bj2700051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Marino G., Nitti G., Arnone M. I., Sannia G., Gambacorta A., De Rosa M. Purification and characterization of aspartate aminotransferase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. J Biol Chem. 1988 Sep 5;263(25):12305–12309. [PubMed] [Google Scholar]
  13. Matsuzawa H., Tokugawa K., Hamaoki M., Mizoguchi M., Taguchi H., Terada I., Kwon S. T., Ohta T. Purification and characterization of aqualysin I (a thermophilic alkaline serine protease) produced by Thermus aquaticus YT-1. Eur J Biochem. 1988 Feb 1;171(3):441–447. doi: 10.1111/j.1432-1033.1988.tb13809.x. [DOI] [PubMed] [Google Scholar]
  14. Peek K., Daniel R. M., Monk C., Parker L., Coolbear T. Purification and characterization of a thermostable proteinase isolated from Thermus sp. strain Rt41A. Eur J Biochem. 1992 Aug 1;207(3):1035–1044. doi: 10.1111/j.1432-1033.1992.tb17140.x. [DOI] [PubMed] [Google Scholar]
  15. Pisani F. M., Rella R., Raia C. A., Rozzo C., Nucci R., Gambacorta A., De Rosa M., Rossi M. Thermostable beta-galactosidase from the archaebacterium Sulfolobus solfataricus. Purification and properties. Eur J Biochem. 1990 Jan 26;187(2):321–328. doi: 10.1111/j.1432-1033.1990.tb15308.x. [DOI] [PubMed] [Google Scholar]
  16. Puchegger S., Redl B., Stöffler G. Purification and properties of a thermostable fumarate hydratase from the archaeobacterium Sulfolobus solfataricus. J Gen Microbiol. 1990 Aug;136(8):1537–1541. doi: 10.1099/00221287-136-8-1537. [DOI] [PubMed] [Google Scholar]
  17. Saravani G. A., Cowan D. A., Daniel R. M., Morgan H. W. Caldolase, a chelator-insensitive extracellular serine proteinase from a Thermus spp. Biochem J. 1989 Sep 1;262(2):409–416. doi: 10.1042/bj2620409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schinkinger M. F., Redl B., Stöffler G. Purification and properties of an extreme thermostable glutamate dehydrogenase from the archaebacterium Sulfolobus solfataricus. Biochim Biophys Acta. 1991 Jan 23;1073(1):142–148. doi: 10.1016/0304-4165(91)90194-l. [DOI] [PubMed] [Google Scholar]
  19. Simpson H. D., Haufler U. R., Daniel R. M. An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J. 1991 Jul 15;277(Pt 2):413–417. doi: 10.1042/bj2770413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Voordouw G., Milo C., Roche R. S. Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability. Biochemistry. 1976 Aug 24;15(17):3716–3724. doi: 10.1021/bi00662a012. [DOI] [PubMed] [Google Scholar]
  21. Wrba A., Schweiger A., Schultes V., Jaenicke R., Závodszky P. Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochemistry. 1990 Aug 21;29(33):7584–7592. doi: 10.1021/bi00485a007. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES