Abstract
Hepatic proteolysis is inhibited by cell swelling following a variety of experimental manoeuvres, such as reduction of extracellular osmolarity, concentrative uptake of amino acids, or blockade of K+ channels by barium. On the other hand, proteolysis is known to be accomplished by pH-sensitive lysosomal proteases. Accordingly, NH3/NH4+ inhibits proteolysis by intralysosomal alkalinization. The present study has been performed to test for an effect of cell volume on the pH of acidic intracellular compartments, as assessed by Acridine Orange fluorescence at > 520 nm (F > 520). F > 520 is enhanced by NH3/NH4+ (2 and 20 mmol/l respectively), by glutamine (2 mmol/l), by the K(+)-channel blocker barium (10 mmol/l) and by reduction of extracellular osmolarity (by 20 and 80 mosmol/l respectively). The observations point to release of Acridine Orange from acidic cellular compartments, which is indicative of alkalinization of these compartments during cell swelling. This effect may contribute to the regulation of proteolysis.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dean R. T. Direct evidence of importance of lysosomes in degradation of intracellular proteins. Nature. 1975 Oct 2;257(5525):414–416. doi: 10.1038/257414a0. [DOI] [PubMed] [Google Scholar]
- Ganz M. B., Boyarsky G., Sterzel R. B., Boron W. F. Arginine vasopressin enhances pHi regulation in the presence of HCO3- by stimulating three acid-base transport systems. Nature. 1989 Feb 16;337(6208):648–651. doi: 10.1038/337648a0. [DOI] [PubMed] [Google Scholar]
- Halestrap A. P. The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta. 1989 Mar 23;973(3):355–382. doi: 10.1016/s0005-2728(89)80378-0. [DOI] [PubMed] [Google Scholar]
- Hallbrucker C., vom Dahl S., Lang F., Gerok W., Häussinger D. Inhibition of hepatic proteolysis by insulin. Role of hormone-induced alterations of the cellular K+ balance. Eur J Biochem. 1991 Jul 15;199(2):467–474. doi: 10.1111/j.1432-1033.1991.tb16145.x. [DOI] [PubMed] [Google Scholar]
- Hansen C. A., Mah S., Williamson J. R. Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver. J Biol Chem. 1986 Jun 25;261(18):8100–8103. [PubMed] [Google Scholar]
- Häussinger D., Hallbrucker C., vom Dahl S., Decker S., Schweizer U., Lang F., Gerok W. Cell volume is a major determinant of proteolysis control in liver. FEBS Lett. 1991 May 20;283(1):70–72. doi: 10.1016/0014-5793(91)80556-i. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Hallbrucker C., vom Dahl S., Lang F., Gerok W. Cell swelling inhibits proteolysis in perfused rat liver. Biochem J. 1990 Nov 15;272(1):239–242. doi: 10.1042/bj2720239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Häussinger D., Lang F., Bauers K., Gerok W. Interactions between glutamine metabolism and cell-volume regulation in perfused rat liver. Eur J Biochem. 1990 Mar 30;188(3):689–695. doi: 10.1111/j.1432-1033.1990.tb15451.x. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Lang F. Cell volume and hormone action. Trends Pharmacol Sci. 1992 Oct;13(10):371–373. doi: 10.1016/0165-6147(92)90114-l. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Lang F. Cell volume in the regulation of hepatic function: a mechanism for metabolic control. Biochim Biophys Acta. 1991 Dec 12;1071(4):331–350. doi: 10.1016/0304-4157(91)90001-d. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Lang F. Exposure of perfused liver to hypotonic conditions modifies cellular nitrogen metabolism. J Cell Biochem. 1990 Aug;43(4):355–361. doi: 10.1002/jcb.240430407. [DOI] [PubMed] [Google Scholar]
- Lake J. R., Van Dyke R. W., Scharschmidt B. F. Acidic vesicles in cultured rat hepatocytes. Identification and characterization of their relationship to lysosomes and other storage vesicles. Gastroenterology. 1987 May;92(5 Pt 1):1251–1261. [PubMed] [Google Scholar]
- Meijer A. J., Gimpel J. A., Deleeuw G. A., Tager J. M., Williamson J. R. Role of anion translocation across the mitochondrial membrane in the regulation of urea synthesis from ammonia by isolated rat hepatocytes. J Biol Chem. 1975 Oct 10;250(19):7728–7738. [PubMed] [Google Scholar]
- Mortimore G. E., Pösö A. R. Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr. 1987;7:539–564. doi: 10.1146/annurev.nu.07.070187.002543. [DOI] [PubMed] [Google Scholar]
- Mortimore G. E., Pösö A. R. Lysosomal pathways in hepatic protein degradation: regulatory role of amino acids. Fed Proc. 1984 Apr;43(5):1289–1294. [PubMed] [Google Scholar]
- Palmgren M. G. Acridine orange as a probe for measuring pH gradients across membranes: mechanism and limitations. Anal Biochem. 1991 Feb 1;192(2):316–321. doi: 10.1016/0003-2697(91)90542-2. [DOI] [PubMed] [Google Scholar]
- Quinlan P. T., Thomas A. P., Armston A. E., Halestrap A. P. Measurement of the intramitochondrial volume in hepatocytes without cell disruption and its elevation by hormones and valinomycin. Biochem J. 1983 Aug 15;214(2):395–404. doi: 10.1042/bj2140395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Sabolić I., Burckhardt G. Proton pathways in rat renal brush-border and basolateral membranes. Biochim Biophys Acta. 1983 Oct 12;734(2):210–220. doi: 10.1016/0005-2736(83)90119-0. [DOI] [PubMed] [Google Scholar]
- Sandeaux R., Sandeaux J., Gavach C., Brun B. Transport of Na+ by monensin across bimolecular lipid membranes. Biochim Biophys Acta. 1982 Jan 4;684(1):127–132. doi: 10.1016/0005-2736(82)90056-6. [DOI] [PubMed] [Google Scholar]
- Schmid A., Burckhardt G., Gögelein H. Single chloride channels in endosomal vesicle preparations from rat kidney cortex. J Membr Biol. 1989 Nov;111(3):265–275. doi: 10.1007/BF01871011. [DOI] [PubMed] [Google Scholar]
- Schmid A., Gögelein H., Kemmer T. P., Schulz I. Anion channels in giant liposomes made of endoplasmic reticulum vesicles from rat exocrine pancreas. J Membr Biol. 1988 Sep;104(3):275–282. doi: 10.1007/BF01872329. [DOI] [PubMed] [Google Scholar]
- Schneider D. L. ATP-dependent acidification of membrane vesicles isolated from purified rat liver lysosomes. Acidification activity requires phosphate. J Biol Chem. 1983 Feb 10;258(3):1833–1838. [PubMed] [Google Scholar]
- Seglen P. O. Inhibitor of protein degradation formed during incubation of isolated rat hepatocytes in a cell culture medium. Its identification as ammonia. Exp Cell Res. 1977 Jun;107(1):207–217. doi: 10.1016/0014-4827(77)90402-5. [DOI] [PubMed] [Google Scholar]
- Van Dyke R. W., Hornick C. A., Belcher J., Scharschmidt B. F., Havel R. J. Identification and characterization of ATP-dependent proton transport by rat liver multivesicular bodies. J Biol Chem. 1985 Sep 15;260(20):11021–11026. [PubMed] [Google Scholar]
- Völkl H., Lang F. Electrophysiology of cell volume regulation in proximal tubules of the mouse kidney. Pflugers Arch. 1988 May;411(5):514–519. doi: 10.1007/BF00582372. [DOI] [PubMed] [Google Scholar]
- Völkl H., Lang F. Ionic requirement for regulatory cell volume decrease in renal straight proximal tubules. Pflugers Arch. 1988 Jul;412(1-2):1–6. doi: 10.1007/BF00583723. [DOI] [PubMed] [Google Scholar]
- Warnock D. G., Reenstra W. W., Yee V. J. Na+/H+ antiporter of brush border vesicles: studies with acridine orange uptake. Am J Physiol. 1982 Jun;242(6):F733–F739. doi: 10.1152/ajprenal.1982.242.6.F733. [DOI] [PubMed] [Google Scholar]
- Weiss H., Lang F. Ion channels activated by swelling of Madin Darby canine kidney (MDCK) cells. J Membr Biol. 1992 Mar;126(2):109–114. doi: 10.1007/BF00231909. [DOI] [PubMed] [Google Scholar]
- Wettstein M., vom Dahl S., Lang F., Gerok W., Häussinger D. Cell volume regulatory responses of isolated perfused rat liver. The effect of amino acids. Biol Chem Hoppe Seyler. 1990 Jun;371(6):493–501. doi: 10.1515/bchm3.1990.371.1.493. [DOI] [PubMed] [Google Scholar]
- Wiesmann U. N., DiDonato S., Herschkowitz N. N. Effect of chloroquine on cultured fibroblasts: release of lysosomal hydrolases and inhibition of their uptake. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1338–1343. doi: 10.1016/0006-291x(75)90506-9. [DOI] [PubMed] [Google Scholar]
