Abstract
1. Viable myocytes were obtained from rat hearts. Oxidation of [1-14C]palmitate by these cells could be decreased by the addition of glucose (5 mM) or lactate (2 mM). In the presence of glucose, insulin decreased and adrenaline increased palmitate oxidation. 2. The myocytes contained activities of ATP citrate-lyase, acetyl-CoA carboxylase and the condensing enzyme of the fatty acid elongation system. No fatty acid synthase activity was demonstrable in myocytes. 3. In rat hearts perfused with 5 mM glucose, malonyl-CoA content was acutely raised by insulin. In the presence of glucose+insulin, perfusion with palmitate or adrenaline decreased the malonyl-CoA content. 4. It is concluded that malonyl-CoA can be synthesized within cardiac myocytes and that the level of this metabolite can be acutely regulated. This is likely to have consequences for the regulation of carnitine palmitoyltransferase in the heart.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allison S. P., Chamberlain M. J., Hinton P. Intravenous glucose tolerance, insulin, glucose, and free fatty acid levels after myocardial infarction. Br Med J. 1969 Dec 27;4(5686):776–778. doi: 10.1136/bmj.4.5686.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allred J. B., Guy D. G. Determination of coenzyme A and acetyl CoA in tissue extracts. Anal Biochem. 1969 May;29(2):293–299. doi: 10.1016/0003-2697(69)90312-1. [DOI] [PubMed] [Google Scholar]
- Bianchi A., Evans J. L., Iverson A. J., Nordlund A. C., Watts T. D., Witters L. A. Identification of an isozymic form of acetyl-CoA carboxylase. J Biol Chem. 1990 Jan 25;265(3):1502–1509. [PubMed] [Google Scholar]
- Bielefeld D. R., Vary T. C., Neely J. R. Inhibition of carnitine palmitoyl-CoA transferase activity and fatty acid oxidation by lactate and oxfenicine in cardiac muscle. J Mol Cell Cardiol. 1985 Jun;17(6):619–625. doi: 10.1016/s0022-2828(85)80030-4. [DOI] [PubMed] [Google Scholar]
- Bird M. I., Saggerson E. D. Binding of malonyl-CoA to isolated mitochondria. Evidence for high- and low-affinity sites in liver and heart and relationship to inhibition of carnitine palmitoyltransferase activity. Biochem J. 1984 Sep 15;222(3):639–647. doi: 10.1042/bj2220639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carey E. M., Dils R. Fatty acid biosynthesis. V. Purification and characterisation of fatty acid synthetase from lactating-rabbit mammary gland. Biochim Biophys Acta. 1970 Sep 8;210(3):371–387. doi: 10.1016/0005-2760(70)90033-0. [DOI] [PubMed] [Google Scholar]
- Caterson I. D., Fuller S. J., Randle P. J. Effect of the fatty acid oxidation inhibitor 2-tetradecylglycidic acid on pyruvate dehydrogenase complex activity in starved and alloxan-diabetic rats. Biochem J. 1982 Oct 15;208(1):53–60. doi: 10.1042/bj2080053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cederblad G., Lindstedt S. A method for the determination of carnitine in the picomole range. Clin Chim Acta. 1972 Mar;37:235–243. doi: 10.1016/0009-8981(72)90438-x. [DOI] [PubMed] [Google Scholar]
- Chen V., Bagby G. J., Spitzer J. J. Exogenous substrate utilization by isolated myocytes from chronically diabetic rats. Am J Physiol. 1983 Jul;245(1):C46–C51. doi: 10.1152/ajpcell.1983.245.1.C46. [DOI] [PubMed] [Google Scholar]
- Davies S. P., Carling D., Munday M. R., Hardie D. G. Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets. Eur J Biochem. 1992 Feb 1;203(3):615–623. doi: 10.1111/j.1432-1033.1992.tb16591.x. [DOI] [PubMed] [Google Scholar]
- Denton R. M., McCormack J. G. Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annu Rev Physiol. 1990;52:451–466. doi: 10.1146/annurev.ph.52.030190.002315. [DOI] [PubMed] [Google Scholar]
- EVANS W. H., MUELLER P. S. EFFECTS OF PALMITATE ON THE METABOLISM OF LEUKOCYTES FROM GUINEA PIG EXUDATE. J Lipid Res. 1963 Jan;4:39–45. [PubMed] [Google Scholar]
- Edwards M. R., Bird M. I., Saggerson E. D. Effects of DL-2-bromopalmitoyl-CoA and bromoacetyl-CoA in rat liver and heart mitochondria. Inhibition of carnitine palmitoyltransferase and displacement of [14C]malonyl-CoA from mitochondrial binding sites. Biochem J. 1985 Aug 15;230(1):169–179. doi: 10.1042/bj2300169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forsey R. G., Reid K., Brosnan J. T. Competition between fatty acids and carbohydrate or ketone bodies as metabolic fuels for the isolated perfused heart. Can J Physiol Pharmacol. 1987 Mar;65(3):401–406. doi: 10.1139/y87-067. [DOI] [PubMed] [Google Scholar]
- Haystead T. A., Moore F., Cohen P., Hardie D. G. Roles of the AMP-activated and cyclic-AMP-dependent protein kinases in the adrenaline-induced inactivation of acetyl-CoA carboxylase in rat adipocytes. Eur J Biochem. 1990 Jan 12;187(1):199–205. doi: 10.1111/j.1432-1033.1990.tb15295.x. [DOI] [PubMed] [Google Scholar]
- Higgins A. J., Morville M., Burges R. A., Gardiner D. G., Page M. G., Blackburn K. J. Oxfenicine diverts rat muscle metabolism from fatty acid to carbohydrate oxidation and protects the ischaemic rat heart. Life Sci. 1980 Sep 15;27(11):963–970. doi: 10.1016/0024-3205(80)90106-x. [DOI] [PubMed] [Google Scholar]
- Hirche H., Langohr H. D. Hemmung der Milchsäureaufnahme im Herzmuskel narkotisierter Hunde durch hohe arterielle Konzentration der freien Fettsäuren. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;293(3):208–214. [PubMed] [Google Scholar]
- Holland R., Witters L. A., Hardie D. G. Glucagon inhibits fatty acid synthesis in isolated hepatocytes via phosphorylation of acetyl-CoA carboxylase by cyclic-AMP-dependent protein kinase. Eur J Biochem. 1984 Apr 16;140(2):325–333. doi: 10.1111/j.1432-1033.1984.tb08105.x. [DOI] [PubMed] [Google Scholar]
- ITAYA K., UI M. COLORIMETRIC DETERMINATION OF FREE FATTY ACIDS IN BIOLOGICAL FLUIDS. J Lipid Res. 1965 Jan;6:16–20. [PubMed] [Google Scholar]
- Iritani N. Nutritional and hormonal regulation of lipogenic-enzyme gene expression in rat liver. Eur J Biochem. 1992 Apr 15;205(2):433–442. doi: 10.1111/j.1432-1033.1992.tb16797.x. [DOI] [PubMed] [Google Scholar]
- Jamil H., Madsen N. B. Phosphorylation state of acetyl-coenzyme A carboxylase. I. Linear inverse relationship to activity ratios at different citrate concentrations. J Biol Chem. 1987 Jan 15;262(2):630–637. [PubMed] [Google Scholar]
- Kim K. H., López-Casillas F., Bai D. H., Luo X., Pape M. E. Role of reversible phosphorylation of acetyl-CoA carboxylase in long-chain fatty acid synthesis. FASEB J. 1989 Sep;3(11):2250–2256. doi: 10.1096/fasebj.3.11.2570725. [DOI] [PubMed] [Google Scholar]
- Kolodziej M. P., Crilly P. J., Corstorphine C. G., Zammit V. A. Development and characterization of a polyclonal antibody against rat liver mitochondrial overt carnitine palmitoyltransferase (CPT I). Distinction of CPT I from CPT II and of isoforms of CPT I in different tissues. Biochem J. 1992 Mar 1;282(Pt 2):415–421. doi: 10.1042/bj2820415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurien V. A., Oliver M. F. Serum-free-fatty-acids after acute myocardial infarction and cerebral vascular occlusion. Lancet. 1966 Jul 16;2(7455):122–127. doi: 10.1016/s0140-6736(66)92420-2. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Liedtke A. J., Nellis S. H., Mjøs O. D. Effects of reducing fatty acid metabolism on mechanical function in regionally ischemic hearts. Am J Physiol. 1984 Sep;247(3 Pt 2):H387–H394. doi: 10.1152/ajpheart.1984.247.3.H387. [DOI] [PubMed] [Google Scholar]
- Liu M. S., Spitzer J. J. Oxidation of palmitate and lactate by beating myocytes isolated from adult dog heart. J Mol Cell Cardiol. 1978 May;10(5):415–426. doi: 10.1016/0022-2828(78)90363-2. [DOI] [PubMed] [Google Scholar]
- Lopaschuk G. D., Spafford M. A., Davies N. J., Wall S. R. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res. 1990 Feb;66(2):546–553. doi: 10.1161/01.res.66.2.546. [DOI] [PubMed] [Google Scholar]
- Lopaschuk G. D., Wall S. R., Olley P. M., Davies N. J. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res. 1988 Dec;63(6):1036–1043. doi: 10.1161/01.res.63.6.1036. [DOI] [PubMed] [Google Scholar]
- Mabrouk G. M., Helmy I. M., Thampy K. G., Wakil S. J. Acute hormonal control of acetyl-CoA carboxylase. The roles of insulin, glucagon, and epinephrine. J Biol Chem. 1990 Apr 15;265(11):6330–6338. [PubMed] [Google Scholar]
- Martin B. R., Denton R. M. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm. Biochem J. 1970 May;117(5):861–877. doi: 10.1042/bj1170861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Mills S. E., Long C. S., Foster D. W. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J. 1983 Jul 15;214(1):21–28. doi: 10.1042/bj2140021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGarry J. D., Sen A., Esser V., Woeltje K. F., Weis B., Foster D. W. New insights into the mitochondrial carnitine palmitoyltransferase enzyme system. Biochimie. 1991 Jan;73(1):77–84. doi: 10.1016/0300-9084(91)90078-f. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Stark M. J., Foster D. W. Hepatic malonyl-CoA levels of fed, fasted and diabetic rats as measured using a simple radioisotopic assay. J Biol Chem. 1978 Nov 25;253(22):8291–8293. [PubMed] [Google Scholar]
- Miller W. P., Liedtke A. J., Nellis S. H. Effects of 2-tetradecylglycidic acid on myocardial function in swine hearts. Am J Physiol. 1986 Sep;251(3 Pt 2):H547–H553. doi: 10.1152/ajpheart.1986.251.3.H547. [DOI] [PubMed] [Google Scholar]
- Molaparast-Saless F., Liedtke A. J., Nellis S. H. Effects of the fatty acid blocking agents, oxfenicine and 4-bromocrotonic acid, on performance in aerobic and ischemic myocardium. J Mol Cell Cardiol. 1987 May;19(5):509–520. doi: 10.1016/s0022-2828(87)80402-9. [DOI] [PubMed] [Google Scholar]
- Montini J., Bagby G. J., Spitzer J. J. Importance of exogenous substrates for the energy production of adult rat heart myocytes. J Mol Cell Cardiol. 1981 Oct;13(10):903–911. doi: 10.1016/0022-2828(81)90289-3. [DOI] [PubMed] [Google Scholar]
- Mowbray J., Ottaway J. H. The flux of pyruvate in perfused rat heart. Eur J Biochem. 1973 Jul 16;36(2):362–368. doi: 10.1111/j.1432-1033.1973.tb02920.x. [DOI] [PubMed] [Google Scholar]
- Opie L. H. Metabolism of free fatty acids, glucose and catecholamines in acute myocardial infarction. Relation to myocardial ischemia and infarct size. Am J Cardiol. 1975 Dec;36(7):938–953. doi: 10.1016/0002-9149(75)90086-7. [DOI] [PubMed] [Google Scholar]
- PHILLIPS A. H., LANGDON R. G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem. 1962 Aug;237:2652–2660. [PubMed] [Google Scholar]
- Paulson D. J., Noonan J. J., Ward K. M., Stanley H., Sherratt A., Shug A. L. Effects of POCA on metabolism and function in the ischemic rat heart. Basic Res Cardiol. 1986 Mar-Apr;81(2):180–187. doi: 10.1007/BF01907382. [DOI] [PubMed] [Google Scholar]
- Powell T., Terrar D. A., Twist V. W. Electrical properties of individual cells isolated from adult rat ventricular myocardium. J Physiol. 1980 May;302:131–153. doi: 10.1113/jphysiol.1980.sp013234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prasad M. R., Cinti D. L. Effect of the peroxisomal proliferator di(2-ethylhexyl)phthalate on component reactions of the rat hepatic microsomal fatty acid chain elongation system and on other hepatic lipogenic enzymes. Arch Biochem Biophys. 1986 Aug 1;248(2):479–488. doi: 10.1016/0003-9861(86)90501-1. [DOI] [PubMed] [Google Scholar]
- RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
- Saggerson D. Carnitine palmitoyltransferase in extrahepatic tissues. Biochem Soc Trans. 1986 Aug;14(4):679–681. doi: 10.1042/bst0140679. [DOI] [PubMed] [Google Scholar]
- Saggerson D., Ghadiminejad I., Awan M. Regulation of mitochondrial carnitine palmitoyl transferases from liver and extrahepatic tissues. Adv Enzyme Regul. 1992;32:285–306. doi: 10.1016/0065-2571(92)90023-s. [DOI] [PubMed] [Google Scholar]
- Saggerson E. D., Carpenter C. A. Carnitine palmitoyltransferase and carnitine octanoyltransferase activities in liver, kidney cortex, adipocyte, lactating mammary gland, skeletal muscle and heart. FEBS Lett. 1981 Jul 6;129(2):229–232. doi: 10.1016/0014-5793(81)80171-8. [DOI] [PubMed] [Google Scholar]
- Saggerson E. D., Greenbaum A. L. The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue. Effects of altered dietary and hormonal conditions. Biochem J. 1970 Sep;119(2):221–242. doi: 10.1042/bj1190221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saggerson E. D. Lipogenesis in rat and guinea-pig isolated epididymal fat-cells. Biochem J. 1974 May;140(2):211–224. doi: 10.1042/bj1400211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scholte H. R., Luyt-Houwen I. E., Dubelaar M. L., Hulsmann W. C. The source of malonyl-CoA in rat heart. The calcium paradox releases acetyl-CoA carboxylase and not propionyl-CoA carboxylase. FEBS Lett. 1986 Mar 17;198(1):47–50. doi: 10.1016/0014-5793(86)81182-6. [DOI] [PubMed] [Google Scholar]
- Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spitzer J. J. Effect of lactate infusion on canine myocardial free fatty acid metabolism in vivo. Am J Physiol. 1974 Jan;226(1):213–217. doi: 10.1152/ajplegacy.1974.226.1.213. [DOI] [PubMed] [Google Scholar]
- Spitzer J. J., Spitzer J. A. Myocardial metabolism in dogs during hemorrhagic shock. Am J Physiol. 1972 Jan;222(1):101–105. doi: 10.1152/ajplegacy.1972.222.1.101. [DOI] [PubMed] [Google Scholar]
- Switzer B. R., Summer G. K. A modified fluorometric micromethod for DNA. Clin Chim Acta. 1971 Apr;32(2):203–206. doi: 10.1016/0009-8981(71)90333-0. [DOI] [PubMed] [Google Scholar]
- Taegtmeyer H., Hems R., Krebs H. A. Utilization of energy-providing substrates in the isolated working rat heart. Biochem J. 1980 Mar 15;186(3):701–711. doi: 10.1042/bj1860701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thampy K. G. Formation of malonyl coenzyme A in rat heart. Identification and purification of an isozyme of A carboxylase from rat heart. J Biol Chem. 1989 Oct 25;264(30):17631–17634. [PubMed] [Google Scholar]
- Thampy K. G., Wakil S. J. Regulation of acetyl-coenzyme A carboxylase. I. Purification and properties of two forms of acetyl-coenzyme A carboxylase from rat liver. J Biol Chem. 1988 May 5;263(13):6447–6453. [PubMed] [Google Scholar]
- WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
- Wit-Peeters E. M., Scholte H. R., Elenbaas H. L. Fatty acid synthesis in heart. Biochim Biophys Acta. 1970 Sep 8;210(3):360–370. doi: 10.1016/0005-2760(70)90032-9. [DOI] [PubMed] [Google Scholar]
- Witters L. A., Kemp B. E. Insulin activation of acetyl-CoA carboxylase accompanied by inhibition of the 5'-AMP-activated protein kinase. J Biol Chem. 1992 Feb 15;267(5):2864–2867. [PubMed] [Google Scholar]
- Woeltje K. F., Esser V., Weis B. C., Cox W. F., Schroeder J. G., Liao S. T., Foster D. W., McGarry J. D. Inter-tissue and inter-species characteristics of the mitochondrial carnitine palmitoyltransferase enzyme system. J Biol Chem. 1990 Jun 25;265(18):10714–10719. [PubMed] [Google Scholar]
