Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Oct 1;295(Pt 1):67–72. doi: 10.1042/bj2950067

Differential control of the functional cell surface expression and content of hexose transporter GLUT-1 by glucose and glucose metabolism in murine fibroblasts.

P A Ortiz 1, H C Haspel 1
PMCID: PMC1134821  PMID: 8216241

Abstract

The present paper evaluates the contributions of glucose and its metabolites to the post-translational regulation of hexose transport and GLUT-1 content in murine fibroblasts. The effects of 3-O-methylglucose, a nearly non-metabolizable glucose analogue, on 2-deoxyglucose-uptake, cell-surface expression and content of GLUT-1, glucose 6-phosphate levels, and phosphoglucose isomerase (PGI) and hexokinase activities of murine fibroblasts were compared with those of glucose and fructose. Glucose (EC50 approximately 6 mM) or 3-O-methylglucose (EC50 approximately 12 mM), which are substrates of GLUT-1, but not fructose, which is not transported by GLUT-1, are able to prevent the glucose-deprivation-induced increases in both hexose transport and cell-surface expression of GLUT-1. In contrast, glucose (EC50 approximately 6 mM), but not 3-O-methylglucose or fructose, prevents the glucose-deprivation-induced accumulation of total GLUT-1 polypeptides. Glucose (> or = 5 mM), but not fructose or 3-O-methylglucose, leads to significant glucose 6-phosphate accumulation. Although 3-O-methylglucose is weakly phosphorylated by fibroblasts, accumulation of phosphorylated product does not correlate with hexose-transport regulation. The activities of hexokinase and PGI are not altered by glucose, fructose or 3-O-methylglucose. We suggest that, in murine fibroblasts: (i) hexose transport and GLUT-1 content are differentially regulated; (ii) substrates of GLUT-1 and/or their immediate metabolites regulate the cell-surface expression of functional GLUT-1; and (iii) glucose metabolism is required for the regulation of GLUT-1 content.

Full text

PDF
67

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrejchyshyn S., Continelli L., Germinario R. J. Permanent hexose transport upregulation in a respiration-deficient human fibroblast cell strain. Am J Physiol. 1991 Dec;261(6 Pt 1):C973–C979. doi: 10.1152/ajpcell.1991.261.6.C973. [DOI] [PubMed] [Google Scholar]
  2. Bell G. I., Kayano T., Buse J. B., Burant C. F., Takeda J., Lin D., Fukumoto H., Seino S. Molecular biology of mammalian glucose transporters. Diabetes Care. 1990 Mar;13(3):198–208. doi: 10.2337/diacare.13.3.198. [DOI] [PubMed] [Google Scholar]
  3. Birnbaum M. J., Haspel H. C., Rosen O. M. Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science. 1987 Mar 20;235(4795):1495–1498. doi: 10.1126/science.3029870. [DOI] [PubMed] [Google Scholar]
  4. Carruthers A. Facilitated diffusion of glucose. Physiol Rev. 1990 Oct;70(4):1135–1176. doi: 10.1152/physrev.1990.70.4.1135. [DOI] [PubMed] [Google Scholar]
  5. Christopher C. W., Colby W. W., Ullrey D. Derepression and carrier turnover: evidence for two distinct mechanisms of hexose transport regulation in animal cells. J Cell Physiol. 1976 Dec;89(4):683–692. doi: 10.1002/jcp.1040890427. [DOI] [PubMed] [Google Scholar]
  6. Christopher C. W., Morgan R. A. Are lysosomes involved in hexose transport regulation? Turnover of hexose carriers and the activity of thiol cathepsins are arrested by cyanate and ammonia. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4416–4420. doi: 10.1073/pnas.78.7.4416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark A. E., Holman G. D. Exofacial photolabelling of the human erythrocyte glucose transporter with an azitrifluoroethylbenzoyl-substituted bismannose. Biochem J. 1990 Aug 1;269(3):615–622. doi: 10.1042/bj2690615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gatley S. J., Holden J. E., Halama J. R., DeGrado T. R., Bernstein D. R., Ng C. K. Phosphorylation of glucose analog 3-O-methyl-D-glucose by rat heart. Biochem Biophys Res Commun. 1984 Mar 30;119(3):1008–1014. doi: 10.1016/0006-291x(84)90874-x. [DOI] [PubMed] [Google Scholar]
  9. Germinario R. J., Chang Z., Manuel S., Oliveira M. Control of sugar transport in human fibroblasts independent of glucose metabolism or carrier-substrate interaction. Biochem Biophys Res Commun. 1985 May 16;128(3):1418–1424. doi: 10.1016/0006-291x(85)91098-8. [DOI] [PubMed] [Google Scholar]
  10. Germinario R. J., Rockman H., Oliveira M., Manuel S., Taylor M. Regulation of sugar transport in cultured diploid human skin fibroblasts. J Cell Physiol. 1982 Sep;112(3):367–372. doi: 10.1002/jcp.1041120309. [DOI] [PubMed] [Google Scholar]
  11. Gershman H., Robbins P. W. Transitory effects of glucose starvation on the synthesis of dolichol-linked oligosaccharides in mammalian cells. J Biol Chem. 1981 Aug 10;256(15):7774–7780. [PubMed] [Google Scholar]
  12. Gould G. W., Thomas H. M., Jess T. J., Bell G. I. Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry. 1991 May 28;30(21):5139–5145. doi: 10.1021/bi00235a004. [DOI] [PubMed] [Google Scholar]
  13. Haspel H. C., Mynarcik D. C., Ortiz P. A., Honkanen R. A., Rosenfeld M. G. Glucose deprivation induces the selective accumulation of hexose transporter protein GLUT-1 in the plasma membrane of normal rat kidney cells. Mol Endocrinol. 1991 Jan;5(1):61–72. doi: 10.1210/mend-5-1-61. [DOI] [PubMed] [Google Scholar]
  14. Haspel H. C., Revillame J., Rosen O. M. Structure, biosynthesis, and function of the hexose transporter in Chinese hamster ovary cells deficient in N-acetylglucosaminyltransferase 1 activity. J Cell Physiol. 1988 Aug;136(2):361–366. doi: 10.1002/jcp.1041360221. [DOI] [PubMed] [Google Scholar]
  15. Haspel H. C., Rosenfeld M. G., Rosen O. M. Characterization of antisera to a synthetic carboxyl-terminal peptide of the glucose transporter protein. J Biol Chem. 1988 Jan 5;263(1):398–403. [PubMed] [Google Scholar]
  16. Haspel H. C., Wilk E. W., Birnbaum M. J., Cushman S. W., Rosen O. M. Glucose deprivation and hexose transporter polypeptides of murine fibroblasts. J Biol Chem. 1986 May 25;261(15):6778–6789. [PubMed] [Google Scholar]
  17. Hwang Y. Y., Kim S. G., Evelhoch J. L., Ackerman J. J. Nonglycolytic acidification of murine radiation-induced fibrosarcoma 1 tumor via 3-O-methyl-D-glucose monitored by 1H, 2H, 13C, and 31P nuclear magnetic resonance spectroscopy. Cancer Res. 1992 Mar 1;52(5):1259–1266. [PubMed] [Google Scholar]
  18. Kahn B. B. Facilitative glucose transporters: regulatory mechanisms and dysregulation in diabetes. J Clin Invest. 1992 May;89(5):1367–1374. doi: 10.1172/JCI115724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kalckar H. M., Ullrey D. B. Further clues concerning the vectors essential to regulation of hexose transport, as studied in fibroblast cultures from a metabolic mutant. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1126–1129. doi: 10.1073/pnas.81.4.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kleinzeller A., McAvoy E. M. Transport and phosphorylation of 2-deoxy-D-galactase in renal cortical cells. Biochim Biophys Acta. 1976 Nov 11;455(1):126–143. doi: 10.1016/0005-2736(76)90158-9. [DOI] [PubMed] [Google Scholar]
  21. Koivisto U. M., Martinez-Valdez H., Bilan P. J., Burdett E., Ramlal T., Klip A. Differential regulation of the GLUT-1 and GLUT-4 glucose transport systems by glucose and insulin in L6 muscle cells in culture. J Biol Chem. 1991 Feb 5;266(4):2615–2621. [PubMed] [Google Scholar]
  22. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  23. Maher F., Harrison L. C. Hexose specificity for downregulation of HepG2/brain-type glucose transporter gene expression in L6 myocytes. Diabetologia. 1990 Nov;33(11):641–648. doi: 10.1007/BF00400564. [DOI] [PubMed] [Google Scholar]
  24. Malaisse-Lagae F., Giroix M. H., Sener A., Malaisse W. J. Phosphorylation of 3-O-methyl-D-glucose by yeast and beef hexokinase. FEBS Lett. 1986 Mar 31;198(2):292–294. doi: 10.1016/0014-5793(86)80423-9. [DOI] [PubMed] [Google Scholar]
  25. Mercado C. L., Loeb J. N., Ismail-Beigi F. Enhanced glucose transport in response to inhibition of respiration in Clone 9 cells. Am J Physiol. 1989 Jul;257(1 Pt 1):C19–C28. doi: 10.1152/ajpcell.1989.257.1.C19. [DOI] [PubMed] [Google Scholar]
  26. Ortiz P. A., Honkanen R. A., Klingman D. E., Haspel H. C. Regulation of the functional expression of hexose transporter GLUT-1 by glucose in murine fibroblasts: role of lysosomal degradation. Biochemistry. 1992 Jun 16;31(23):5386–5393. doi: 10.1021/bi00138a021. [DOI] [PubMed] [Google Scholar]
  27. Pessin J. E., Bell G. I. Mammalian facilitative glucose transporter family: structure and molecular regulation. Annu Rev Physiol. 1992;54:911–930. doi: 10.1146/annurev.ph.54.030192.004403. [DOI] [PubMed] [Google Scholar]
  28. Rearick J. I., Chapman A., Kornfeld S. Glucose starvation alters lipid-linked oligosaccharide biosynthesis in Chinese hamster ovary cells. J Biol Chem. 1981 Jun 25;256(12):6255–6261. [PubMed] [Google Scholar]
  29. Reitzer L. J., Wice B. M., Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem. 1979 Apr 25;254(8):2669–2676. [PubMed] [Google Scholar]
  30. Reitzer L. J., Wice B. M., Kennell D. The pentose cycle. Control and essential function in HeLa cell nucleic acid synthesis. J Biol Chem. 1980 Jun 25;255(12):5616–5626. [PubMed] [Google Scholar]
  31. Shawver L. K., Olson S. A., White M. K., Weber M. J. Degradation and biosynthesis of the glucose transporter protein in chicken embryo fibroblasts transformed by the src oncogene. Mol Cell Biol. 1987 Jun;7(6):2112–2118. doi: 10.1128/mcb.7.6.2112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tordjman K. M., Leingang K. A., Mueckler M. Differential regulation of the HepG2 and adipocyte/muscle glucose transporters in 3T3L1 adipocytes. Effect of chronic glucose deprivation. Biochem J. 1990 Oct 1;271(1):201–207. doi: 10.1042/bj2710201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ullrey D. B., Franchi A., Pouyssegur J., Kalckar H. M. Down-regulation of the hexose transport system: metabolic basis studied with a fibroblast mutant lacking phosphoglucose isomerase. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3777–3779. doi: 10.1073/pnas.79.12.3777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Walker P. S., Donovan J. A., Van Ness B. G., Fellows R. E., Pessin J. E. Glucose-dependent regulation of glucose transport activity, protein, and mRNA in primary cultures of rat brain glial cells. J Biol Chem. 1988 Oct 25;263(30):15594–15601. [PubMed] [Google Scholar]
  35. Walker P. S., Ramlal T., Donovan J. A., Doering T. P., Sandra A., Klip A., Pessin J. E. Insulin and glucose-dependent regulation of the glucose transport system in the rat L6 skeletal muscle cell line. J Biol Chem. 1989 Apr 15;264(11):6587–6595. [PubMed] [Google Scholar]
  36. Walker P. S., Ramlal T., Sarabia V., Koivisto U. M., Bilan P. J., Pessin J. E., Klip A. Glucose transport activity in L6 muscle cells is regulated by the coordinate control of subcellular glucose transporter distribution, biosynthesis, and mRNA transcription. J Biol Chem. 1990 Jan 25;265(3):1516–1523. [PubMed] [Google Scholar]
  37. Warren A. P., Pasternak C. A. Common pathway for the induction of hexose transport by insulin and stress. J Cell Physiol. 1989 Feb;138(2):323–328. doi: 10.1002/jcp.1041380215. [DOI] [PubMed] [Google Scholar]
  38. White M. K., Weber M. J. Transformation by the src oncogene alters glucose transport into rat and chicken cells by different mechanisms. Mol Cell Biol. 1988 Jan;8(1):138–144. doi: 10.1128/mcb.8.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wice B. M., Reitzer L. J., Kennell D. The continuous growth of vertebrate cells in the absence of sugar. J Biol Chem. 1981 Aug 10;256(15):7812–7819. [PubMed] [Google Scholar]
  40. Widnell C. C., Baldwin S. A., Davies A., Martin S., Pasternak C. A. Cellular stress induces a redistribution of the glucose transporter. FASEB J. 1990 Apr 1;4(6):1634–1637. doi: 10.1096/fasebj.4.6.2156742. [DOI] [PubMed] [Google Scholar]
  41. Yamada K., Tillotson L. G., Isselbacher K. J. Regulation of hexose carriers in chicken embryo fibroblasts. Effect of glucose starvation and role of protein synthesis. J Biol Chem. 1983 Aug 25;258(16):9786–9792. [PubMed] [Google Scholar]
  42. Yang J., Clark A. E., Harrison R., Kozka I. J., Holman G. D. Trafficking of glucose transporters in 3T3-L1 cells. Inhibition of trafficking by phenylarsine oxide implicates a slow dissociation of transporters from trafficking proteins. Biochem J. 1992 Feb 1;281(Pt 3):809–817. doi: 10.1042/bj2810809. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES