Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Oct 1;295(Pt 1):87–99. doi: 10.1042/bj2950087

Modelling of the serine-proteinase fold by X-ray and neutron scattering and sedimentation analyses: occurrence of the fold in factor D of the complement system.

S J Perkins 1, K F Smith 1, J M Kilpatrick 1, J E Volanakis 1, R B Sim 1
PMCID: PMC1134824  PMID: 8216242

Abstract

Solution scattering is a powerful means of determining the overall arrangement of domains in the multidomain proteins of complement. the serine-proteinase domain is central to all proteolytic events during complement activation. As models of this domain, bovine beta-trypsin, trypsinogen, alpha-chymotrypsin and chymotrypsinogen A were studied by neutron and X-ray synchrotron solution scattering. At pH 7, all the X-ray and neutron M(r) values corresponded to monomeric proteins. The X-ray radii of gyration, RG, of beta-trypsin, trypsinogen, alpha-chymotrypsin and chymotrypsinogen A (measured in positive solute-solvent contrasts) were 1.59 nm, 1.78 nm, 1.71 nm and 1.76 nm (+/- 0.05-0.11 nm) in that order. Neutron contrast variation showed that the RG at infinite contrast, RC, for these four proteins were 1.57 nm, 1.70 nm, 1.67 nm and 1.78 nm (+/- 0.03 nm) in that same order. The radial inhomogeneity of neutron-scattering density, alpha, was positive at (5-13) x 10(-5), and corresponds to the preponderance of hydrophilic residues near the protein surface. On trypsinogen activation, a small reduction in the RG value of 0.13 +/- 0.07 nm was just detectable, while the RG of chymotrypsinogen A was unchanged after activation. The RC and alpha values of the four proteins can be calculated by using crystallographic co-ordinates. The reduced RG of beta-trypsin relative to trypsinogen was explained in terms of the removal of the extended N-terminal hexapeptide of trypsinogen. The full X-ray and neutron-scattering curves in positive and negative contrasts agreed well with scattering curves calculated from crystallographic coordinates to a nominal structural resolution of 4.5 nm, provided that the internal structure was considered in neutron modelling, and that the hydration was considered in X-ray modelling. Sedimentation-coefficient data also provide information on the disposition of domains in multidomain proteins. It was found that the hydrated X-ray sphere model could be directly utilized to calculate sedimentation coefficients. X-ray scattering on factor D showed from its RG of 1.78 nm that this is monomeric and very similar in structure to beta-trypsin. The X-ray-scattering curve of factor D was readily modelled using the beta-trypsin crystal structure after allowance for sequence changes. The success of these modellings provides a basis for the constrained modelling of solution scattering data for the multidomain proteins of complement.

Full text

PDF
87

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aune K. C., Timasheff S. N. Dimerization of alpha-chymotrypsin. I. pH dependence in the acid region. Biochemistry. 1971 Apr 27;10(9):1609–1617. doi: 10.1021/bi00785a017. [DOI] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Bode W., Schwager P., Huber R. The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding. The refined crystal structures of the bovine trypsinogen-pancreatic trypsin inhibitor complex and of its ternary complex with Ile-Val at 1.9 A resolution. J Mol Biol. 1978 Jan 5;118(1):99–112. doi: 10.1016/0022-2836(78)90246-2. [DOI] [PubMed] [Google Scholar]
  4. Bode W., Schwager P. The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. J Mol Biol. 1975 Nov 15;98(4):693–717. doi: 10.1016/s0022-2836(75)80005-2. [DOI] [PubMed] [Google Scholar]
  5. Bode W. The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding. II. The binding of the pancreatic trypsin inhibitor and of isoleucine-valine and of sequentially related peptides to trypsinogen and to p-guanidinobenzoate-trypsinogen. J Mol Biol. 1979 Feb 5;127(4):357–374. doi: 10.1016/0022-2836(79)90227-4. [DOI] [PubMed] [Google Scholar]
  6. Bolton P. H., Jones C. R., Bastedo-Lerner D., Wong K. L., Kearns D. R. Quantitative determination of the number of secondary and tertiary structure base pairs in transfer RNA in solution. Biochemistry. 1976 Oct 5;15(20):4370–4377. doi: 10.1021/bi00665a004. [DOI] [PubMed] [Google Scholar]
  7. Chase T., Jr, Shaw E. p-Nitrophenyl-p'-guanidinobenzoate HCl: a new active site titrant for trypsin. Biochem Biophys Res Commun. 1967 Nov 30;29(4):508–514. doi: 10.1016/0006-291x(67)90513-x. [DOI] [PubMed] [Google Scholar]
  8. Chothia C. Structural invariants in protein folding. Nature. 1975 Mar 27;254(5498):304–308. doi: 10.1038/254304a0. [DOI] [PubMed] [Google Scholar]
  9. Cliffe S. G., Grant D. A. Calcium-binding constants of trypsin and trypsinogen. A reassessment. Biochem J. 1981 Feb 1;193(2):655–658. doi: 10.1042/bj1930655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cook K. S., Groves D. L., Min H. Y., Spiegelman B. M. A developmentally regulated mRNA from 3T3 adipocytes encodes a novel serine protease homologue. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6480–6484. doi: 10.1073/pnas.82.19.6480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cusack S. Instrumental effects on the scattering curves. J Mol Biol. 1981 Jan 25;145(3):539–541. [PubMed] [Google Scholar]
  12. DREYER W. J., WADE R. D., NEURATH H. Observations on the electrophoretic and ultracentrifugal changes accompanying the activation of chymotrypsinogen. Arch Biochem Biophys. 1955 Nov;59(1):145–156. doi: 10.1016/0003-9861(55)90471-9. [DOI] [PubMed] [Google Scholar]
  13. Damaschun G., Fichtner P., Pürschel H. V., Reich J. G. Untersuchung der Quartärstruktur von Proteinen mittels Röntgen-Kleinwinkelstreuung. II. Zur Struktur des Komplexes Trypsin-Sojaboheninhibitor. Acta Biol Med Ger. 1968;21(3):309–316. [PubMed] [Google Scholar]
  14. De La Torre J. G., Bloomfield V. A. Hydrodynamics of macromolecular complexes. III. Bacterial viruses. Biopolymers. 1977 Aug;16(8):1779–1793. doi: 10.1002/bip.1977.360160813. [DOI] [PubMed] [Google Scholar]
  15. Fehlhammer H., Bode W., Huber R. Crystal structure of bovine trypsinogen at 1-8 A resolution. II. Crystallographic refinement, refined crystal structure and comparison with bovine trypsin. J Mol Biol. 1977 Apr 25;111(4):415–438. doi: 10.1016/s0022-2836(77)80062-4. [DOI] [PubMed] [Google Scholar]
  16. Fehlhammer H., Bode W. The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. I. Crystallization, data collection and application of patterson search technique. J Mol Biol. 1975 Nov 15;98(4):683–692. doi: 10.1016/s0022-2836(75)80004-0. [DOI] [PubMed] [Google Scholar]
  17. Gomez J. E., Birnbaum E. R., Darnall D. W. The metal ion acceleration of the conversion of trypsinogen to trypsin. Lanthanide ions as calcium ion substitutes. Biochemistry. 1974 Aug 27;13(18):3745–3750. doi: 10.1021/bi00715a020. [DOI] [PubMed] [Google Scholar]
  18. Gomez J. E., Birnbaum E. R., Royer G. P., Darnall D. W. The effect of calcium ion on the urea denaturation of immobilized bovine trypsin. Biochim Biophys Acta. 1977 Nov 25;495(1):177–182. doi: 10.1016/0005-2795(77)90252-5. [DOI] [PubMed] [Google Scholar]
  19. Ibel K. Comparison of neutron and X-ray scattering of dilute myoglobin solutions. J Mol Biol. 1975 Apr 5;93(2):255–265. doi: 10.1016/0022-2836(75)90131-x. [DOI] [PubMed] [Google Scholar]
  20. KRATKY O. X-RAY SMALL ANGLE SCATTERING WITH SUBSTANCES OF BIOLOGICAL INTEREST IN DILUTED SOLUTIONS. Prog Biophys Mol Biol. 1963;13:105–173. doi: 10.1016/s0079-6107(63)80015-2. [DOI] [PubMed] [Google Scholar]
  21. Kay J., Kassell B. The autoactivation of trypsinogen. J Biol Chem. 1971 Nov;246(21):6661–6665. [PubMed] [Google Scholar]
  22. Kossiakoff A. A., Chambers J. L., Kay L. M., Stroud R. M. Structure of bovine trypsinogen at 1.9 A resolution. Biochemistry. 1977 Feb 22;16(4):654–664. doi: 10.1021/bi00623a016. [DOI] [PubMed] [Google Scholar]
  23. Kossiakoff A. A. Protein dynamics investigated by the neutron diffraction-hydrogen exchange technique. Nature. 1982 Apr 22;296(5859):713–721. doi: 10.1038/296713a0. [DOI] [PubMed] [Google Scholar]
  24. Krigbaum W. R., Godwin R. W. Molecular conformation of chymotrypsinogen and chymotrypsin by low-angle x-ray diffraction. Biochemistry. 1968 Sep;7(9):3126–3131. doi: 10.1021/bi00849a015. [DOI] [PubMed] [Google Scholar]
  25. Lazdunski M., Delaage M. Etude structurale du trypsinogène et de la trypsine. Les diagrammes d'état. Biochim Biophys Acta. 1967 Aug 15;140(3):417–434. [PubMed] [Google Scholar]
  26. Lee J. C., Timasheff S. N. Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride. Biochemistry. 1974 Jan 15;13(2):257–265. doi: 10.1021/bi00699a005. [DOI] [PubMed] [Google Scholar]
  27. Liu W., Trzeciak H., Schüssler H., Meienhofer J. Influence of the complex formation between trypsin and bovine basic trypsin inhibitor on the reactivity of certain disulfide bonds. Biochemistry. 1971 Jul 20;10(15):2849–2855. doi: 10.1021/bi00791a008. [DOI] [PubMed] [Google Scholar]
  28. Londsdale-Eccles J. D., Kerr M. A., Walsh K. A., Neurath H. Catalysis by zymogens: increased reactivity at high ionic strength. FEBS Lett. 1979 Apr 1;100(1):157–160. doi: 10.1016/0014-5793(79)81154-0. [DOI] [PubMed] [Google Scholar]
  29. McDonald R. C., Steitz T. A., Engelman D. M. Yeast hexokinase in solution exhibits a large conformational change upon binding glucose or glucose 6-phosphate. Biochemistry. 1979 Jan 23;18(2):338–342. doi: 10.1021/bi00569a017. [DOI] [PubMed] [Google Scholar]
  30. Min H. Y., Spiegelman B. M. Adipsin, the adipocyte serine protease: gene structure and control of expression by tumor necrosis factor. Nucleic Acids Res. 1986 Nov 25;14(22):8879–8892. doi: 10.1093/nar/14.22.8879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Neet K. E., Brydon S. E. Sedimentation of chemically modified chymotrypsin. Arch Biochem Biophys. 1970 Jan;136(1):223–227. doi: 10.1016/0003-9861(70)90345-0. [DOI] [PubMed] [Google Scholar]
  32. Nichol J. C. Sedimentation behavior of chymotrypsinogen A in the vicinity of the isoelectric point. J Biol Chem. 1968 Aug 10;243(15):4065–4069. [PubMed] [Google Scholar]
  33. Perkins S. J., Nealis A. S., Sutton B. J., Feinstein A. Solution structure of human and mouse immunoglobulin M by synchrotron X-ray scattering and molecular graphics modelling. A possible mechanism for complement activation. J Mol Biol. 1991 Oct 20;221(4):1345–1366. doi: 10.1016/0022-2836(91)90937-2. [DOI] [PubMed] [Google Scholar]
  34. Perkins S. J. Protein volumes and hydration effects. The calculations of partial specific volumes, neutron scattering matchpoints and 280-nm absorption coefficients for proteins and glycoproteins from amino acid sequences. Eur J Biochem. 1986 May 15;157(1):169–180. doi: 10.1111/j.1432-1033.1986.tb09653.x. [DOI] [PubMed] [Google Scholar]
  35. Perkins S. J., Sim R. B. Molecular modelling of human complement component C3 and its fragments by solution scattering. Eur J Biochem. 1986 May 15;157(1):155–168. doi: 10.1111/j.1432-1033.1986.tb09652.x. [DOI] [PubMed] [Google Scholar]
  36. Perkins S. J., Smith K. F. Identity of the putative serine-proteinase fold in proteins of the complement system with nine relevant crystal structures. Biochem J. 1993 Oct 1;295(Pt 1):109–114. doi: 10.1042/bj2950109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Perkins S. J. Structural studies of proteins by high-flux X-ray and neutron solution scattering. Biochem J. 1988 Sep 1;254(2):313–327. doi: 10.1042/bj2540313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Perkins S. J., Weiss H. Low-resolution structural studies of mitochondrial ubiquinol:cytochrome c reductase in detergent solutions by neutron scattering. J Mol Biol. 1983 Aug 25;168(4):847–866. doi: 10.1016/s0022-2836(83)80078-3. [DOI] [PubMed] [Google Scholar]
  39. Perkins S. J., Wüthrich K. Conformational transition from trypsinogen to trypsin. 1H nuclear magnetic resonance at 360 MHz and ring current calculations. J Mol Biol. 1980 Mar 25;138(1):43–64. doi: 10.1016/s0022-2836(80)80004-0. [DOI] [PubMed] [Google Scholar]
  40. Phillips M., Djian P., Green H. The nucleotide sequence of three genes participating in the adipose differentiation of 3T3 cells. J Biol Chem. 1986 Aug 15;261(23):10821–10827. [PubMed] [Google Scholar]
  41. Price N. C. The use of sodium dodecylsulphate-acrylamide-gel electrophoresis to analyse trypsin preparations. Anal Biochem. 1976 Jun;73(2):447–457. doi: 10.1016/0003-2697(76)90194-9. [DOI] [PubMed] [Google Scholar]
  42. Radhakrishnan T. M., Walsh K. A., Neurath H. The promotion of activation of bovine trypsinogen by specific modification of aspartyl residues. Biochemistry. 1969 Oct;8(10):4020–4027. doi: 10.1021/bi00838a019. [DOI] [PubMed] [Google Scholar]
  43. Reid K. B. Activation and control of the complement system. Essays Biochem. 1986;22:27–68. [PubMed] [Google Scholar]
  44. Rosen B. S., Cook K. S., Yaglom J., Groves D. L., Volanakis J. E., Damm D., White T., Spiegelman B. M. Adipsin and complement factor D activity: an immune-related defect in obesity. Science. 1989 Jun 23;244(4911):1483–1487. doi: 10.1126/science.2734615. [DOI] [PubMed] [Google Scholar]
  45. SCHWERT G. W., KAUFMAN S. The molecular size and shape of the pancreatic proteases. III. alpha-Chymotrypsin. J Biol Chem. 1951 Jun;190(2):807–816. [PubMed] [Google Scholar]
  46. SCHWERT G. W. The molecular size and shape of the pancreatic proteases. II. Chymotrypsinogen. J Biol Chem. 1951 Jun;190(2):799–806. [PubMed] [Google Scholar]
  47. Schroeder D. D., Shaw E. Chromatography of trypsin and its derivatives. Characterization of a new active form of bovine trypsin. J Biol Chem. 1968 Jun 10;243(11):2943–2949. [PubMed] [Google Scholar]
  48. Sim R. B., Perkins S. J. Molecular modelling of C3 and its ligands. Curr Top Microbiol Immunol. 1990;153:209–222. doi: 10.1007/978-3-642-74977-3_11. [DOI] [PubMed] [Google Scholar]
  49. Sipos T., Merkel J. R. An effect of calcium ions on the activity, heat stability, and structure of trypsin. Biochemistry. 1970 Jul 7;9(14):2766–2775. doi: 10.1021/bi00816a003. [DOI] [PubMed] [Google Scholar]
  50. Smith K. F., Harrison R. A., Perkins S. J. Structural comparisons of the native and reactive-centre-cleaved forms of alpha 1-antitrypsin by neutron- and X-ray-scattering in solution. Biochem J. 1990 Apr 1;267(1):203–212. doi: 10.1042/bj2670203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Squire P. G., Himmel M. E. Hydrodynamics and protein hydration. Arch Biochem Biophys. 1979 Aug;196(1):165–177. doi: 10.1016/0003-9861(79)90563-0. [DOI] [PubMed] [Google Scholar]
  52. Stuhrmann H. B. Comparison of the three basic scattering functions of myoglobin in solution with those from the known structure in crystalline state. J Mol Biol. 1973 Jul 5;77(3):363–369. doi: 10.1016/0022-2836(73)90444-0. [DOI] [PubMed] [Google Scholar]
  53. Tellam R., Winzor D. J. Self-association of alpha-chymotrypsin at low ionic strength in the vicinity of its pH optimum. Biochem J. 1977 Mar 1;161(3):687–694. doi: 10.1042/bj1610687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Thanki N., Thornton J. M., Goodfellow J. M. Distributions of water around amino acid residues in proteins. J Mol Biol. 1988 Aug 5;202(3):637–657. doi: 10.1016/0022-2836(88)90292-6. [DOI] [PubMed] [Google Scholar]
  55. Timasheff S. N. On the mechanism of alpha-chymotrypsin dimerization. Arch Biochem Biophys. 1969 Jun;132(1):165–169. doi: 10.1016/0003-9861(69)90349-x. [DOI] [PubMed] [Google Scholar]
  56. Tomana M., Niemann M., Garner C., Volanakis J. E. Carbohydrate composition of the second, third and fifth components and factors B and D of human complement. Mol Immunol. 1985 Feb;22(2):107–111. doi: 10.1016/s0161-5890(85)80004-3. [DOI] [PubMed] [Google Scholar]
  57. Volanakis J. E., Macon K. J. Isolation of complement protein D from urine of patients with Fanconi's syndrome. Anal Biochem. 1987 May 15;163(1):242–246. doi: 10.1016/0003-2697(87)90119-9. [DOI] [PubMed] [Google Scholar]
  58. Wang D., Bode W., Huber R. Bovine chymotrypsinogen A X-ray crystal structure analysis and refinement of a new crystal form at 1.8 A resolution. J Mol Biol. 1985 Oct 5;185(3):595–624. doi: 10.1016/0022-2836(85)90074-9. [DOI] [PubMed] [Google Scholar]
  59. Weber K., Pringle J. R., Osborn M. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 1972;26:3–27. doi: 10.1016/s0076-6879(72)26003-7. [DOI] [PubMed] [Google Scholar]
  60. White R. T., Damm D., Hancock N., Rosen B. S., Lowell B. B., Usher P., Flier J. S., Spiegelman B. M. Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J Biol Chem. 1992 May 5;267(13):9210–9213. [PubMed] [Google Scholar]
  61. YON J. Action du chlorure de sodium sur l'autolyse de la trypsine. Biochim Biophys Acta. 1959 Jan;31(1):75–85. doi: 10.1016/0006-3002(59)90441-x. [DOI] [PubMed] [Google Scholar]
  62. Zaccaï G., Jacrot B. Small angle neutron scattering. Annu Rev Biophys Bioeng. 1983;12:139–157. doi: 10.1146/annurev.bb.12.060183.001035. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES