Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Oct 1;295(Pt 1):101–108. doi: 10.1042/bj2950101

Molecular modelling of the domain structure of factor I of human complement by X-ray and neutron solution scattering.

S J Perkins 1, K F Smith 1, R B Sim 1
PMCID: PMC1134825  PMID: 8216202

Abstract

Factor I is a typical multidomain protein of the complement system. It regulates complement activation by proteolytic degradation of C3b or C4b in the presence of factor H, complement receptor type 1, membrane cofactor protein or C4b-binding protein as cofactor. It is constructed from five presumed independently folded domains, namely a factor I module, a CD5-like domain, two low-density-lipoprotein receptor type A domains and a serine-proteinase domain. X-ray and neutron solution scattering was used to study the arrangement of these domains in factor I. Factor I was determined to be monomeric in solution, with an A280(1%,1cm) of 12.3-14.1. Its radius of gyration (RG) was 3.96 nm by X-rays in a high positive solute-solvent contrast, and 3.84 nm by neutrons at infinite solute-solvent contrast. The cross-sectional radius of gyration (RXS) was likewise found to be 1.64 nm by X-rays and 1.55 nm by neutrons. The RG data were not noticeably dependent on the solute-solvent contrast, whereas the RXS data showed a small dependence. The maximum dimension of factor I was determined to be 12.8 nm from the RG and RXS data, and 14-15 nm from the X-ray and neutron distance distribution functions. This length is too short to account for a linear arrangement of the domains in factor I. Small sphere models were developed for factor I in which the largest domain was modelled from the crystal structure for beta-trypsin. The attachment of either an elliptical cylinder or a two-armed V-shaped structure to this domain to represent the remaining four small domains gave good scattering curve-fits for factor I, and were compatible with experimental sedimentation coefficients. The non-extended domain models for factor I imply that the steric accessibility of each domain will be reduced, and this may be important for its functional activity.

Full text

PDF
101

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becherer J. D., Alsenz J., Lambris J. D. Molecular aspects of C3 interactions and structural/functional analysis of C3 from different species. Curr Top Microbiol Immunol. 1990;153:45–72. doi: 10.1007/978-3-642-74977-3_3. [DOI] [PubMed] [Google Scholar]
  2. Catterall C. F., Lyons A., Sim R. B., Day A. J., Harris T. J. Characterization of primary amino acid sequence of human complement control protein factor I from an analysis of cDNA clones. Biochem J. 1987 Mar 15;242(3):849–856. doi: 10.1042/bj2420849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chothia C. Structural invariants in protein folding. Nature. 1975 Mar 27;254(5498):304–308. doi: 10.1038/254304a0. [DOI] [PubMed] [Google Scholar]
  4. Cooper N. R. Isolation and analysis of the mechanism of action of an inactivator of C4b in normal human serum. J Exp Med. 1975 Apr 1;141(4):890–903. [PMC free article] [PubMed] [Google Scholar]
  5. Crossley L. G. C3b inactivator and beta 1H. Methods Enzymol. 1981;80(Pt 100):112–124. [PubMed] [Google Scholar]
  6. Crossley L. G., Porter R. R. Purification of the human complement control protein C3b inactivator. Biochem J. 1980 Oct 1;191(1):173–182. doi: 10.1042/bj1910173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De La Torre J. G., Bloomfield V. A. Hydrodynamics of macromolecular complexes. III. Bacterial viruses. Biopolymers. 1977 Aug;16(8):1779–1793. doi: 10.1002/bip.1977.360160813. [DOI] [PubMed] [Google Scholar]
  8. DiScipio R. G., Hugli T. E. The molecular architecture of human complement component C6. J Biol Chem. 1989 Sep 25;264(27):16197–16206. [PubMed] [Google Scholar]
  9. DiScipio R. G. Ultrastructures and interactions of complement factors H and I. J Immunol. 1992 Oct 15;149(8):2592–2599. [PubMed] [Google Scholar]
  10. Ekdahl K. N., Nilsson U. R., Nilsson B. Inhibition of factor I by diisopropylfluorophosphate. Evidence of conformational changes in factor I induced by C3b and additional studies on the specificity of factor I. J Immunol. 1990 Jun 1;144(11):4269–4274. [PubMed] [Google Scholar]
  11. Fearon D. T. Purification of C3b inactivator and demonstration of its two polypeptide chain structure. J Immunol. 1977 Oct;119(4):1248–1252. [PubMed] [Google Scholar]
  12. Fearon D. T. Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5867–5871. doi: 10.1073/pnas.76.11.5867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Freeman M., Ashkenas J., Rees D. J., Kingsley D. M., Copeland N. G., Jenkins N. A., Krieger M. An ancient, highly conserved family of cysteine-rich protein domains revealed by cloning type I and type II murine macrophage scavenger receptors. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8810–8814. doi: 10.1073/pnas.87.22.8810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fujita T., Gigli I., Nussenzweig V. Human C4-binding protein. II. Role in proteolysis of C4b by C3b-inactivator. J Exp Med. 1978 Oct 1;148(4):1044–1051. doi: 10.1084/jem.148.4.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gigli I., Fujita T., Nussenzweig V. Modulation of the classical pathway C3 convertase by plasma proteins C4 binding protein and C3b inactivator. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6596–6600. doi: 10.1073/pnas.76.12.6596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goldberger G., Arnaout M. A., Aden D., Kay R., Rits M., Colten H. R. Biosynthesis and postsynthetic processing of human C3b/C4b inactivator (factor I) in three hepatoma cell lines. J Biol Chem. 1984 May 25;259(10):6492–6497. [PubMed] [Google Scholar]
  17. Goldberger G., Bruns G. A., Rits M., Edge M. D., Kwiatkowski D. J. Human complement factor I: analysis of cDNA-derived primary structure and assignment of its gene to chromosome 4. J Biol Chem. 1987 Jul 25;262(21):10065–10071. [PubMed] [Google Scholar]
  18. Haefliger J. A., Tschopp J., Vial N., Jenne D. E. Complete primary structure and functional characterization of the sixth component of the human complement system. Identification of the C5b-binding domain in complement C6. J Biol Chem. 1989 Oct 25;264(30):18041–18051. [PubMed] [Google Scholar]
  19. Hourcade D., Holers V. M., Atkinson J. P. The regulators of complement activation (RCA) gene cluster. Adv Immunol. 1989;45:381–416. doi: 10.1016/s0065-2776(08)60697-5. [DOI] [PubMed] [Google Scholar]
  20. Hsiung L., Barclay A. N., Brandon M. R., Sim E., Porter R. R. Purification of human C3b inactivator by monoclonal-antibody affinity chromatography. Biochem J. 1982 Apr 1;203(1):293–298. doi: 10.1042/bj2030293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. KRATKY O. X-RAY SMALL ANGLE SCATTERING WITH SUBSTANCES OF BIOLOGICAL INTEREST IN DILUTED SOLUTIONS. Prog Biophys Mol Biol. 1963;13:105–173. doi: 10.1016/s0079-6107(63)80015-2. [DOI] [PubMed] [Google Scholar]
  22. Medof M. E., Iida K., Mold C., Nussenzweig V. Unique role of the complement receptor CR1 in the degradation of C3b associated with immune complexes. J Exp Med. 1982 Dec 1;156(6):1739–1754. doi: 10.1084/jem.156.6.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nagasawa S., Ichihara C., Stroud R. M. Cleavage of C4b by C3b inactivator: production of a nicked form of C4b, C4b', as an intermediate cleavage product of C4b by C3b inactivator. J Immunol. 1980 Aug;125(2):578–582. [PubMed] [Google Scholar]
  24. Pangburn M. K., Schreiber R. D., Müller-Eberhard H. J. Human complement C3b inactivator: isolation, characterization, and demonstration of an absolute requirement for the serum protein beta1H for cleavage of C3b and C4b in solution. J Exp Med. 1977 Jul 1;146(1):257–270. doi: 10.1084/jem.146.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Perkins S. J., Chung L. P., Reid K. B. Unusual ultrastructure of complement-component-C4b-binding protein of human complement by synchrotron X-ray scattering and hydrodynamic analysis. Biochem J. 1986 Feb 1;233(3):799–807. doi: 10.1042/bj2330799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Perkins S. J. Protein volumes and hydration effects. The calculations of partial specific volumes, neutron scattering matchpoints and 280-nm absorption coefficients for proteins and glycoproteins from amino acid sequences. Eur J Biochem. 1986 May 15;157(1):169–180. doi: 10.1111/j.1432-1033.1986.tb09653.x. [DOI] [PubMed] [Google Scholar]
  27. Perkins S. J., Sim R. B. Molecular modelling of human complement component C3 and its fragments by solution scattering. Eur J Biochem. 1986 May 15;157(1):155–168. doi: 10.1111/j.1432-1033.1986.tb09652.x. [DOI] [PubMed] [Google Scholar]
  28. Perkins S. J., Smith K. F. Identity of the putative serine-proteinase fold in proteins of the complement system with nine relevant crystal structures. Biochem J. 1993 Oct 1;295(Pt 1):109–114. doi: 10.1042/bj2950109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Perkins S. J., Smith K. F., Kilpatrick J. M., Volanakis J. E., Sim R. B. Modelling of the serine-proteinase fold by X-ray and neutron scattering and sedimentation analyses: occurrence of the fold in factor D of the complement system. Biochem J. 1993 Oct 1;295(Pt 1):87–99. doi: 10.1042/bj2950087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Perkins S. J., Smith K. F., Nealis A. S. Molecular modelling strategies in application to complement. Biochem Soc Trans. 1990 Dec;18(6):1151–1154. doi: 10.1042/bst0181151. [DOI] [PubMed] [Google Scholar]
  31. Perkins S. J. Structural studies of proteins by high-flux X-ray and neutron solution scattering. Biochem J. 1988 Sep 1;254(2):313–327. doi: 10.1042/bj2540313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Perkins S. J., Villiers C. L., Arlaud G. J., Boyd J., Burton D. R., Colomb M. G., Dwek R. A. Neutron scattering studies of subcomponent C1q of first component C1 of human complement and its association with subunit C1r2C1s2 within C1. J Mol Biol. 1984 Nov 5;179(3):547–557. doi: 10.1016/0022-2836(84)90079-2. [DOI] [PubMed] [Google Scholar]
  33. Perkins S. J., Weiss H. Low-resolution structural studies of mitochondrial ubiquinol:cytochrome c reductase in detergent solutions by neutron scattering. J Mol Biol. 1983 Aug 25;168(4):847–866. doi: 10.1016/s0022-2836(83)80078-3. [DOI] [PubMed] [Google Scholar]
  34. Reid K. B., Day A. J. Structure-function relationships of the complement components. Immunol Today. 1989 Jun;10(6):177–180. doi: 10.1016/0167-5699(89)90317-4. [DOI] [PubMed] [Google Scholar]
  35. Schneider W. J. The low density lipoprotein receptor. Biochim Biophys Acta. 1989 May 9;988(2):303–317. doi: 10.1016/0304-4157(89)90023-3. [DOI] [PubMed] [Google Scholar]
  36. Sim R. B., Day A. J., Moffatt B. E., Fontaine M. Complement factor I and cofactors in control of complement system convertase enzymes. Methods Enzymol. 1993;223:13–35. doi: 10.1016/0076-6879(93)23035-l. [DOI] [PubMed] [Google Scholar]
  37. Smith K. F., Harrison R. A., Perkins S. J. Molecular modeling of the domain structure of C9 of human complement by neutron and X-ray solution scattering. Biochemistry. 1992 Jan 28;31(3):754–764. doi: 10.1021/bi00118a017. [DOI] [PubMed] [Google Scholar]
  38. Smith K. F., Harrison R. A., Perkins S. J. Structural comparisons of the native and reactive-centre-cleaved forms of alpha 1-antitrypsin by neutron- and X-ray-scattering in solution. Biochem J. 1990 Apr 1;267(1):203–212. doi: 10.1042/bj2670203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Smith K. F., Nolan K. F., Reid K. B., Perkins S. J. Neutron and X-ray scattering studies on the human complement protein properdin provide an analysis of the thrombospondin repeat. Biochemistry. 1991 Aug 13;30(32):8000–8008. doi: 10.1021/bi00246a018. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES