Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Oct 1;295(Pt 1):109–114. doi: 10.1042/bj2950109

Identity of the putative serine-proteinase fold in proteins of the complement system with nine relevant crystal structures.

S J Perkins 1, K F Smith 1
PMCID: PMC1134826  PMID: 8216203

Abstract

The serine-proteinase domain is responsible for the proteolytic events that occur during complement activation. The sequences of nine serine proteinases of known crystal structure were compared with the serine-proteinase sequences in the six complement proteins C1r, C1s, C2, factor B, factor I and factor D to assess the degree of structural homology of the latter with the crystal structures. All sequence insertions and deletions were readily located at the protein surface. The internal location of disulphide bridges and the surface location of putative glycosylation sites are compatible with this structure. Secondary-structure predictions for the sequences were fully consistent with the crystal structures. It is concluded that the double subdomain beta-sheet motif is retained in the complement sequences, but that localized differences are observed for factor I, C2 and factor B.

Full text

PDF
109

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentley D. R. Primary structure of human complement component C2. Homology to two unrelated protein families. Biochem J. 1986 Oct 15;239(2):339–345. doi: 10.1042/bj2390339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bode W., Chen Z., Bartels K., Kutzbach C., Schmidt-Kastner G., Bartunik H. Refined 2 A X-ray crystal structure of porcine pancreatic kallikrein A, a specific trypsin-like serine proteinase. Crystallization, structure determination, crystallographic refinement, structure and its comparison with bovine trypsin. J Mol Biol. 1983 Feb 25;164(2):237–282. doi: 10.1016/0022-2836(83)90077-3. [DOI] [PubMed] [Google Scholar]
  3. Bode W., Schwager P. The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. J Mol Biol. 1975 Nov 15;98(4):693–717. doi: 10.1016/s0022-2836(75)80005-2. [DOI] [PubMed] [Google Scholar]
  4. Campbell R. D., Porter R. R. Molecular cloning and characterization of the gene coding for human complement protein factor B. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4464–4468. doi: 10.1073/pnas.80.14.4464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Catterall C. F., Lyons A., Sim R. B., Day A. J., Harris T. J. Characterization of primary amino acid sequence of human complement control protein factor I from an analysis of cDNA clones. Biochem J. 1987 Mar 15;242(3):849–856. doi: 10.1042/bj2420849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chothia C., Janin J. Orthogonal packing of beta-pleated sheets in proteins. Biochemistry. 1982 Aug 17;21(17):3955–3965. doi: 10.1021/bi00260a009. [DOI] [PubMed] [Google Scholar]
  7. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  8. Cohen G. H., Silverton E. W., Davies D. R. Refined crystal structure of gamma-chymotrypsin at 1.9 A resolution. Comparison with other pancreatic serine proteases. J Mol Biol. 1981 Jun 5;148(4):449–479. doi: 10.1016/0022-2836(81)90186-8. [DOI] [PubMed] [Google Scholar]
  9. Fothergill J., Kemp G., Paton N., Carter P., Gray P. The structures of human C1r and C1s and their relationship to other serine proteases. Behring Inst Mitt. 1989 Jul;(84):72–79. [PubMed] [Google Scholar]
  10. Fujinaga M., James M. N. Rat submaxillary gland serine protease, tonin. Structure solution and refinement at 1.8 A resolution. J Mol Biol. 1987 May 20;195(2):373–396. doi: 10.1016/0022-2836(87)90658-9. [DOI] [PubMed] [Google Scholar]
  11. Gagnon J. Structure and activation of complement components C2 and factor B. Philos Trans R Soc Lond B Biol Sci. 1984 Sep 6;306(1129):301–309. doi: 10.1098/rstb.1984.0091. [DOI] [PubMed] [Google Scholar]
  12. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  13. Gibrat J. F., Garnier J., Robson B. Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. J Mol Biol. 1987 Dec 5;198(3):425–443. doi: 10.1016/0022-2836(87)90292-0. [DOI] [PubMed] [Google Scholar]
  14. Greer J. Comparative modeling methods: application to the family of the mammalian serine proteases. Proteins. 1990;7(4):317–334. doi: 10.1002/prot.340070404. [DOI] [PubMed] [Google Scholar]
  15. Hess D., Schaller J., Rickli E. E. Identification of the disulfide bonds of human complement C1s. Biochemistry. 1991 Mar 19;30(11):2827–2833. doi: 10.1021/bi00225a014. [DOI] [PubMed] [Google Scholar]
  16. Ishikawa N., Nonaka M., Wetsel R. A., Colten H. R. Murine complement C2 and factor B genomic and cDNA cloning reveals different mechanisms for multiple transcripts of C2 and B. J Biol Chem. 1990 Nov 5;265(31):19040–19046. [PubMed] [Google Scholar]
  17. James M. N., Delbaere L. T., Brayer G. D. Amino acid sequence alignment of bacterial and mammalian pancreatic serine proteases based on topological equivalences. Can J Biochem. 1978 Jun;56(6):396–402. doi: 10.1139/o78-062. [DOI] [PubMed] [Google Scholar]
  18. Journet A., Tosi M. Cloning and sequencing of full-length cDNA encoding the precursor of human complement component C1r. Biochem J. 1986 Dec 15;240(3):783–787. doi: 10.1042/bj2400783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  20. Lewin R. When does homology mean something else? Science. 1987 Sep 25;237(4822):1570–1570. doi: 10.1126/science.3629257. [DOI] [PubMed] [Google Scholar]
  21. Leytus S. P., Kurachi K., Sakariassen K. S., Davie E. W. Nucleotide sequence of the cDNA coding for human complement C1r. Biochemistry. 1986 Aug 26;25(17):4855–4863. doi: 10.1021/bi00365a020. [DOI] [PubMed] [Google Scholar]
  22. Mackinnon C. M., Carter P. E., Smyth S. J., Dunbar B., Fothergill J. E. Molecular cloning of cDNA for human complement component C1s. The complete amino acid sequence. Eur J Biochem. 1987 Dec 15;169(3):547–553. doi: 10.1111/j.1432-1033.1987.tb13644.x. [DOI] [PubMed] [Google Scholar]
  23. Mole J. E., Anderson J. K., Davison E. A., Woods D. E. Complete primary structure for the zymogen of human complement factor B. J Biol Chem. 1984 Mar 25;259(6):3407–3412. [PubMed] [Google Scholar]
  24. Narayana S. V., Kilpatrick J. M., el-Kabbani O., Babu Y. S., Bugg C. E., Volanakis J. E., DeLucas L. J. Crystallization and preliminary X-ray investigation of factor D of human complement. J Mol Biol. 1991 May 5;219(1):1–3. doi: 10.1016/0022-2836(91)90851-v. [DOI] [PubMed] [Google Scholar]
  25. Navia M. A., McKeever B. M., Springer J. P., Lin T. Y., Williams H. R., Fluder E. M., Dorn C. P., Hoogsteen K. Structure of human neutrophil elastase in complex with a peptide chloromethyl ketone inhibitor at 1.84-A resolution. Proc Natl Acad Sci U S A. 1989 Jan;86(1):7–11. doi: 10.1073/pnas.86.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Perkins S. J., Haris P. I., Sim R. B., Chapman D. A study of the structure of human complement component factor H by Fourier transform infrared spectroscopy and secondary structure averaging methods. Biochemistry. 1988 May 31;27(11):4004–4012. doi: 10.1021/bi00411a017. [DOI] [PubMed] [Google Scholar]
  27. Perkins S. J., Smith K. F., Kilpatrick J. M., Volanakis J. E., Sim R. B. Modelling of the serine-proteinase fold by X-ray and neutron scattering and sedimentation analyses: occurrence of the fold in factor D of the complement system. Biochem J. 1993 Oct 1;295(Pt 1):87–99. doi: 10.1042/bj2950087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Perkins S. J., Smith K. F., Sim R. B. Molecular modelling of the domain structure of factor I of human complement by X-ray and neutron solution scattering. Biochem J. 1993 Oct 1;295(Pt 1):101–108. doi: 10.1042/bj2950101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Read R. J., James M. N. Refined crystal structure of Streptomyces griseus trypsin at 1.7 A resolution. J Mol Biol. 1988 Apr 5;200(3):523–551. doi: 10.1016/0022-2836(88)90541-4. [DOI] [PubMed] [Google Scholar]
  30. Reeck G. R., de Haën C., Teller D. C., Doolittle R. F., Fitch W. M., Dickerson R. E., Chambon P., McLachlan A. D., Margoliash E., Jukes T. H. "Homology" in proteins and nucleic acids: a terminology muddle and a way out of it. Cell. 1987 Aug 28;50(5):667–667. doi: 10.1016/0092-8674(87)90322-9. [DOI] [PubMed] [Google Scholar]
  31. Reid K. B. Activation and control of the complement system. Essays Biochem. 1986;22:27–68. [PubMed] [Google Scholar]
  32. Remington S. J., Woodbury R. G., Reynolds R. A., Matthews B. W., Neurath H. The structure of rat mast cell protease II at 1.9-A resolution. Biochemistry. 1988 Oct 18;27(21):8097–8105. doi: 10.1021/bi00421a019. [DOI] [PubMed] [Google Scholar]
  33. Rogers J. Exon shuffling and intron insertion in serine protease genes. Nature. 1985 Jun 6;315(6019):458–459. doi: 10.1038/315458a0. [DOI] [PubMed] [Google Scholar]
  34. Sali A., Blundell T. L. Definition of general topological equivalence in protein structures. A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming. J Mol Biol. 1990 Mar 20;212(2):403–428. doi: 10.1016/0022-2836(90)90134-8. [DOI] [PubMed] [Google Scholar]
  35. Sawyer L., Shotton D. M., Campbell J. W., Wendell P. L., Muirhead H., Watson H. C. The atomic structure of crystalline porcine pancreatic elastase at 2.5 A resolution: comparisons with the structure of alpha-chymotrypsin. J Mol Biol. 1978 Jan 15;118(2):137–208. doi: 10.1016/0022-2836(78)90412-6. [DOI] [PubMed] [Google Scholar]
  36. Sim R. B., Perkins S. J. Molecular modelling of C3 and its ligands. Curr Top Microbiol Immunol. 1990;153:209–222. doi: 10.1007/978-3-642-74977-3_11. [DOI] [PubMed] [Google Scholar]
  37. Sprang S., Standing T., Fletterick R. J., Stroud R. M., Finer-Moore J., Xuong N. H., Hamlin R., Rutter W. J., Craik C. S. The three-dimensional structure of Asn102 mutant of trypsin: role of Asp102 in serine protease catalysis. Science. 1987 Aug 21;237(4817):905–909. doi: 10.1126/science.3112942. [DOI] [PubMed] [Google Scholar]
  38. Taylor W. R. Hierarchical method to align large numbers of biological sequences. Methods Enzymol. 1990;183:456–474. doi: 10.1016/0076-6879(90)83031-4. [DOI] [PubMed] [Google Scholar]
  39. Tosi M., Duponchel C., Meo T., Couture-Tosi E. Complement genes C1r and C1s feature an intronless serine protease domain closely related to haptoglobin. J Mol Biol. 1989 Aug 20;208(4):709–714. doi: 10.1016/0022-2836(89)90161-7. [DOI] [PubMed] [Google Scholar]
  40. Tsukada H., Blow D. M. Structure of alpha-chymotrypsin refined at 1.68 A resolution. J Mol Biol. 1985 Aug 20;184(4):703–711. doi: 10.1016/0022-2836(85)90314-6. [DOI] [PubMed] [Google Scholar]
  41. Wang D., Bode W., Huber R. Bovine chymotrypsinogen A X-ray crystal structure analysis and refinement of a new crystal form at 1.8 A resolution. J Mol Biol. 1985 Oct 5;185(3):595–624. doi: 10.1016/0022-2836(85)90074-9. [DOI] [PubMed] [Google Scholar]
  42. Wei A. Z., Mayr I., Bode W. The refined 2.3 A crystal structure of human leukocyte elastase in a complex with a valine chloromethyl ketone inhibitor. FEBS Lett. 1988 Jul 18;234(2):367–373. doi: 10.1016/0014-5793(88)80118-2. [DOI] [PubMed] [Google Scholar]
  43. White R. T., Damm D., Hancock N., Rosen B. S., Lowell B. B., Usher P., Flier J. S., Spiegelman B. M. Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J Biol Chem. 1992 May 5;267(13):9210–9213. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES