Abstract
We have previously identified free ADP-ribose (ADPR) as a normal metabolite in mature human erythrocytes. In this study the metabolic transformations of ADPR were investigated in both supernatants from erythrocyte lysates and intact erythrocytes, loaded with ADPR by means of a procedure involving hypotonic haemolysis and isotonic resealing. In both experimental systems, the main pathway was a dinucleotide pyrophosphatase-catalysed hydrolysis to yield AMP, which was readily converted into the adenylic and inosinic nucleotide pools. To a lesser extent, ADPR underwent conversion into a compound that was identified as ADP-ribulose (ADPRu), on the basis of m.s., n.m.r. spectroscopy and enzymic analysis. ADPRu was also susceptible to degradation by the dinucleotide pyrophosphatase, which was partially purified from erythrocyte lysates and characterized with respect to its substrate specificity. Isomerization of ADPR to ADPRu was markedly enhanced by ATP. Incubation of unsealed haemoglobin-free erythrocyte membranes with labelled ADPR did not cause any transformation of this nucleotide and resulted in its trichloroacetic acid- and formic acid-resistant binding to a number of membrane cytoskeletal proteins. These proteins include spectrin, glyceraldehyde 3-phosphate dehydrogenase (Ga3PDH), three proteins of molecular masses 98, 79 and 72 kDa, which apparently comigrate with bands 3, 4.1 and 4.2 respectively, and two additional proteins of molecular masses 58 and 41 kDa. Acid-resistant binding of ADPR, as well as of NAD+, to Ga3PDH was confirmed for the enzyme purified from human erythrocytes.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Burch H. B., Bradley M. E., Lowry O. H. The measurement of triphosphopyridine nucleotide and reduced triphosphopyridine nucleotide and the role of hemoglobin in producing erroneous triphosphopyridine nucleotide values. J Biol Chem. 1967 Oct 10;242(19):4546–4554. [PubMed] [Google Scholar]
- Cohen C. M., Foley S. F. Phorbol ester- and Ca2+-dependent phosphorylation of human red cell membrane skeletal proteins. J Biol Chem. 1986 Jun 15;261(17):7701–7709. [PubMed] [Google Scholar]
- De Flora A., Benatti U., Guida L., Zocchi E. Encapsulation of adriamycin in human erythrocytes. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7029–7033. doi: 10.1073/pnas.83.18.7029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Flora A., Zocchi E., Guida L., Polvani C., Benatti U. Conversion of encapsulated 5-fluoro-2'-deoxyuridine 5'-monophosphate to the antineoplastic drug 5-fluoro-2'-deoxyuridine in human erythrocytes. Proc Natl Acad Sci U S A. 1988 May;85(9):3145–3149. doi: 10.1073/pnas.85.9.3145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dimmeler S., Lottspeich F., Brüne B. Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem. 1992 Aug 25;267(24):16771–16774. [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- Franco L., Guida L., Zocchi E., Silvestro L., Benatti U., De Flora A. Adenosine diphosphate ribulose in human erythrocytes: a new metabolite with membrane binding properties. Biochem Biophys Res Commun. 1993 Feb 15;190(3):1143–1148. doi: 10.1006/bbrc.1993.1169. [DOI] [PubMed] [Google Scholar]
- Guida L., Zocchi E., Franco L., Benatti U., De Flora A. Presence and turnover of adenosine diphosphate ribose in human erythrocytes. Biochem Biophys Res Commun. 1992 Oct 15;188(1):402–408. doi: 10.1016/0006-291x(92)92399-i. [DOI] [PubMed] [Google Scholar]
- Hilz H., Koch R., Fanick W., Klapproth K., Adamietz P. Nonenzymic ADP-ribosylation of specific mitochondrial polypeptides. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3929–3933. doi: 10.1073/pnas.81.13.3929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikejima M., Gill D. M. Nonenzymic adenosine 5'-diphosphate ribosylation of poly(adenosine diphosphate ribose). Biochemistry. 1985 Sep 10;24(19):5039–5045. doi: 10.1021/bi00340a013. [DOI] [PubMed] [Google Scholar]
- Jacobson M. K., Payne D. M., Alvarez-Gonzalez R., Juarez-Salinas H., Sims J. L., Jacobson E. L. Determination of in vivo levels of polymeric and monomeric ADP-ribose by fluorescence methods. Methods Enzymol. 1984;106:483–494. doi: 10.1016/0076-6879(84)06052-3. [DOI] [PubMed] [Google Scholar]
- Kim U. H., Rockwood S. F., Kim H. R., Daynes R. A. Membrane-associated NAD+ glycohydrolase from rabbit erythrocytes is solubilized by phosphatidylinositol-specific phospholipase C. Biochim Biophys Acta. 1988 Apr 14;965(1):76–81. doi: 10.1016/0304-4165(88)90153-5. [DOI] [PubMed] [Google Scholar]
- Kots AYa, Skurat A. V., Sergienko E. A., Bulargina T. V., Severin E. S. Nitroprusside stimulates the cysteine-specific mono(ADP-ribosylation) of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. FEBS Lett. 1992 Mar 23;300(1):9–12. doi: 10.1016/0014-5793(92)80153-8. [DOI] [PubMed] [Google Scholar]
- Kuchel P. W., Chapman B. E. Direct observation of the NAD glycohydrolase reaction in human erythrocytes using NMR spectroscopy. Experientia. 1985 Jan 15;41(1):53–55. doi: 10.1007/BF02005870. [DOI] [PubMed] [Google Scholar]
- Kun E., Chang A. C., Sharma M. L., Ferro A. M., Nitecki D. Covalent modification of proteins by metabolites of NAD+. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3131–3135. doi: 10.1073/pnas.73.9.3131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee H. C. Specific binding of cyclic ADP-ribose to calcium-storing microsomes from sea urchin eggs. J Biol Chem. 1991 Feb 5;266(4):2276–2281. [PubMed] [Google Scholar]
- Lee H. C., Walseth T. F., Bratt G. T., Hayes R. N., Clapper D. L. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J Biol Chem. 1989 Jan 25;264(3):1608–1615. [PubMed] [Google Scholar]
- Lee H. C., Zocchi E., Guida L., Franco L., Benatti U., De Flora A. Production and hydrolysis of cyclic ADP-ribose at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993 Mar 15;191(2):639–645. doi: 10.1006/bbrc.1993.1265. [DOI] [PubMed] [Google Scholar]
- Miró A., Costas M. J., García-Díaz M., Hernández M. T., Cameselle J. C. A specific, low Km ADP-ribose pyrophosphatase from rat liver. FEBS Lett. 1989 Feb 13;244(1):123–126. doi: 10.1016/0014-5793(89)81176-7. [DOI] [PubMed] [Google Scholar]
- Payne D. M., Jacobson E. L., Moss J., Jacobson M. K. Modification of proteins by mono(ADP-ribosylation) in vivo. Biochemistry. 1985 Dec 17;24(26):7540–7549. doi: 10.1021/bi00347a006. [DOI] [PubMed] [Google Scholar]
- Pekala P. H., Anderson B. M. Studies of bovine erythrocyte NAD glycohydrolase. J Biol Chem. 1978 Oct 25;253(20):7453–7459. [PubMed] [Google Scholar]
- Richter C., Winterhalter K. H., Baumhüter S., Lötscher H. R., Moser B. ADP-ribosylation in inner membrane of rat liver mitochondria. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3188–3192. doi: 10.1073/pnas.80.11.3188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogalski A. A., Steck T. L., Waseem A. Association of glyceraldehyde-3-phosphate dehydrogenase with the plasma membrane of the intact human red blood cell. J Biol Chem. 1989 Apr 15;264(11):6438–6446. [PubMed] [Google Scholar]
- Rusinko N., Lee H. C. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity. J Biol Chem. 1989 Jul 15;264(20):11725–11731. [PubMed] [Google Scholar]
- Steck T. L., Yu J. Selective solubilization of proteins from red blood cell membranes by protein perturbants. J Supramol Struct. 1973;1(3):220–232. doi: 10.1002/jss.400010307. [DOI] [PubMed] [Google Scholar]
- Tanaka Y., Yoshihara K., Kamiya T. Enzymic and nonenzymic mono ADP-ribosylation of proteins in skeletal muscle. Biochem Biophys Res Commun. 1989 Sep 15;163(2):1063–1070. doi: 10.1016/0006-291x(89)92329-2. [DOI] [PubMed] [Google Scholar]
- Tanuma S., Endo H. Identification in human erythrocytes of mono(ADP-ribosyl) protein hydrolase that cleaves a mono(ADP-ribosyl) Gi linkage. FEBS Lett. 1990 Feb 26;261(2):381–384. doi: 10.1016/0014-5793(90)80597-c. [DOI] [PubMed] [Google Scholar]
- Tanuma S., Kawashima K., Endo H. Eukaryotic mono(ADP-ribosyl)transferase that ADP-ribosylates GTP-binding regulatory Gi protein. J Biol Chem. 1988 Apr 15;263(11):5485–5489. [PubMed] [Google Scholar]
- Ueda K., Kawaichi M., Okayama H., Hayaishi O. Poly(ADP-ribosy)ation of nuclear proteins. Enzymatic elongation of chemically synthesized ADP-ribose-histone adducts. J Biol Chem. 1979 Feb 10;254(3):679–687. [PubMed] [Google Scholar]
- Yu J., Fischman D. A., Steck T. L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct. 1973;1(3):233–248. doi: 10.1002/jss.400010308. [DOI] [PubMed] [Google Scholar]
- Zhang J., Snyder S. H. Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9382–9385. doi: 10.1073/pnas.89.20.9382. [DOI] [PMC free article] [PubMed] [Google Scholar]


