Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Oct 1;295(Pt 1):195–201. doi: 10.1042/bj2950195

A novel mono-branched lipid phosphate acts as a substrate for dolichyl phosphate mannose synthetase.

I B Wilson 1, J P Taylor 1, M C Webberley 1, N J Turner 1, S L Flitsch 1
PMCID: PMC1134838  PMID: 8216216

Abstract

Dolichyl phosphate mannose synthetase (GDP-mannose: dolichyl-phosphate O-beta-D-mannosyltransferase; EC 2.4.1.83) is an enzyme that is involved in glycoconjugate biosynthesis and possesses a putatively conserved dolichol binding site. In order to probe the interaction between the enzyme and the dolichol chain, lipid phosphates varying in length and extent of branching have been tested as substrates in crude microsomal preparations from Saccharomyces cerevisiae. It was found that phytanyl (3,7,11,15-tetramethylhexadecanyl) phosphate was utilized at 60-70% of the efficiency of the natural dolichyl lipid in transfer of [3,4,-3H]mannose from GDP-Man to organic soluble material, whereas addition of S-3-methyloctadecanyl phosphate, which is of similar length to the phytanyl analogue but with only one branch, resulted in approximately 25% of the incorporation of the natural substrate. Incubations with the unbranched tetradecanyl phosphate and with the short, doubly branched R- and S-dihydrocitronellyl (3,7-dimethyloctanyl) phosphates exhibited levels of activity similar to incubations with no exogenous acceptor. These results were qualitatively confirmed with experiments on Escherichia coli harbouring the S. cerevisiae DPM1 gene. The [3H]mannosylated lipid-linked material from microsomal incubations was purified by anion-exchange chromatography. The major saccharide component recovered after hydrolysis was determined to be mannose, but a mannose-containing disaccharide was also present. It is concluded that branching of lipid phosphates is essential for substrates of dolichyl phosphate mannose synthetase and that significant transfer of mannose occurs even if only branching at C-3 is present.

Full text

PDF
195

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair W. L., Jr, Robertson S. Absolute configuration of dolichol. Biochem J. 1980 Sep 1;189(3):441–445. doi: 10.1042/bj1890441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albright C. F., Orlean P., Robbins P. W. A 13-amino acid peptide in three yeast glycosyltransferases may be involved in dolichol recognition. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7366–7369. doi: 10.1073/pnas.86.19.7366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Babczinski P., Haselbeck A., Tanner W. Yeast mannosyl transferases requiring dolichyl phosphate and dolichyl phosphate mannose as substrate. Partial purification and characterization of the solubilized enzyme. Eur J Biochem. 1980 Apr;105(3):509–515. doi: 10.1111/j.1432-1033.1980.tb04526.x. [DOI] [PubMed] [Google Scholar]
  4. Berendes R., Jaenicke L. Short-chain dolichols of defined chain length as cofactors in reactions of the microsomal dolichyl-phosphate cycle and transglycosylations. Biol Chem Hoppe Seyler. 1992 Jan;373(1):35–42. doi: 10.1515/bchm3.1992.373.1.35. [DOI] [PubMed] [Google Scholar]
  5. Bergman A., Mankowski T., Chojnacki T., De Luca L. M., Peterson E., Dallner G. Glycosyl transfer from nucleotide sugars to C85- and C55-polyprenyl and retinyl phosphates by microsomal subfractions and Golgi membranes of rat liver. Biochem J. 1978 Apr 15;172(1):123–127. doi: 10.1042/bj1720123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chapman A., Fujimoto K., Kornfeld S. The primary glycosylation defect in class E Thy-1-negative mutant mouse lymphoma cells is an inability to synthesize dolichol-P-mannose. J Biol Chem. 1980 May 25;255(10):4441–4446. [PubMed] [Google Scholar]
  7. Chojnacki T., Dallner G. The biological role of dolichol. Biochem J. 1988 Apr 1;251(1):1–9. doi: 10.1042/bj2510001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clark A. F., Villemez C. L. An artificial mannosyl acceptor for GDP-D-mannose: lipid phosphate transmannosylase from Phaseolus aureus. FEBS Lett. 1973 May 15;32(1):84–86. doi: 10.1016/0014-5793(73)80743-4. [DOI] [PubMed] [Google Scholar]
  9. Déglon N., Krapp A., Bron C., Fasel N. Translocation of the yeast dolichol-phosphate-mannose synthase into microsomal membranes. Biochem Biophys Res Commun. 1991 Feb 14;174(3):1337–1342. doi: 10.1016/0006-291x(91)91569-x. [DOI] [PubMed] [Google Scholar]
  10. Gasnier F., Rousson R., Lerme F., Vaganay E., Louisot P., Gateau-Roesch O. Mitochondrial dolichyl-phosphate mannose synthase. Purification and immunogold localization by electron microscopy. Eur J Biochem. 1992 Jun 15;206(3):853–858. doi: 10.1111/j.1432-1033.1992.tb16993.x. [DOI] [PubMed] [Google Scholar]
  11. Gavel Y., von Heijne G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 1990 Apr;3(5):433–442. doi: 10.1093/protein/3.5.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hanover J. A., Lennarz W. J. Transmembrane assembly of N-linked glycoproteins. Studies on the topology of saccharide synthesis. J Biol Chem. 1982 Mar 25;257(6):2787–2794. [PubMed] [Google Scholar]
  13. Haselbeck A. Purification of GDP mannose:dolichyl-phosphate O-beta-D-mannosyltransferase from Saccharomyces cerevisiae. Eur J Biochem. 1989 May 15;181(3):663–668. doi: 10.1111/j.1432-1033.1989.tb14774.x. [DOI] [PubMed] [Google Scholar]
  14. Jaenicke L., Siegmund H. U. Total synthesis of chain-length-uniform dolichyl phosphates and their fitness to accept hexoses in the enzymatic formation of lipoglycans. Biol Chem Hoppe Seyler. 1986 Aug;367(8):787–795. doi: 10.1515/bchm3.1986.367.2.787. [DOI] [PubMed] [Google Scholar]
  15. Jaenicke L., van Leyen K., Siegmund H. U. Dolichyl phosphate-dependent glycosyltransferases utilize truncated cofactors. Biol Chem Hoppe Seyler. 1991 Nov;372(11):1021–1026. doi: 10.1515/bchm3.1991.372.2.1021. [DOI] [PubMed] [Google Scholar]
  16. Jensen J. W., Schutzbach J. S. Activation of dolichyl-phospho-mannose synthase by phospholipids. Eur J Biochem. 1985 Nov 15;153(1):41–48. doi: 10.1111/j.1432-1033.1985.tb09264.x. [DOI] [PubMed] [Google Scholar]
  17. Kaplan H. A., Welply J. K., Lennarz W. J. Oligosaccharyl transferase: the central enzyme in the pathway of glycoprotein assembly. Biochim Biophys Acta. 1987 Jun 24;906(2):161–173. doi: 10.1016/0304-4157(87)90010-4. [DOI] [PubMed] [Google Scholar]
  18. Kean E. L. GDP-mannose-polyprenyl phosphate mannosyltransferases of the retina. J Biol Chem. 1977 Aug 25;252(16):5622–5629. [PubMed] [Google Scholar]
  19. Kelleher D. J., Kreibich G., Gilmore R. Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Cell. 1992 Apr 3;69(1):55–65. doi: 10.1016/0092-8674(92)90118-v. [DOI] [PubMed] [Google Scholar]
  20. Keller R. K., Adair W. L., Jr, Cafmeyer N., Simion F. A., Fleischer B., Fleischer S. Characterization of polyisoprenyl phosphate phosphatase activity in rat liver. Arch Biochem Biophys. 1986 Aug 15;249(1):207–214. doi: 10.1016/0003-9861(86)90576-x. [DOI] [PubMed] [Google Scholar]
  21. Lehle L., Haselbeck A., Tanner W. Synthesis of retinylphosphate mannose in yeast and its possible involvement in lipid-linked oligosaccharide formation. Biochim Biophys Acta. 1983 May 4;757(1):77–84. doi: 10.1016/0304-4165(83)90154-x. [DOI] [PubMed] [Google Scholar]
  22. Lennarz W. J. Protein glycosylation in the endoplasmic reticulum: current topological issues. Biochemistry. 1987 Nov 17;26(23):7205–7210. doi: 10.1021/bi00397a001. [DOI] [PubMed] [Google Scholar]
  23. Löw P., Peterson E., Mizuno M., Takigawa T., Chojnacki T., Dallner G. Reaction of optically active S- and R-forms of dolichyl phosphates with activated sugars. Biochem Biophys Res Commun. 1985 Jul 16;130(1):460–466. doi: 10.1016/0006-291x(85)90439-5. [DOI] [PubMed] [Google Scholar]
  24. Menon A. K., Mayor S., Schwarz R. T. Biosynthesis of glycosyl-phosphatidylinositol lipids in Trypanosoma brucei: involvement of mannosyl-phosphoryldolichol as the mannose donor. EMBO J. 1990 Dec;9(13):4249–4258. doi: 10.1002/j.1460-2075.1990.tb07873.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Meyer W., Schäfer G. Characterization and purification of a membrane-bound archaebacterial pyrophosphatase from Sulfolobus acidocaldarius. Eur J Biochem. 1992 Jul 15;207(2):741–746. doi: 10.1111/j.1432-1033.1992.tb17104.x. [DOI] [PubMed] [Google Scholar]
  26. Orlean P., Albright C., Robbins P. W. Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. J Biol Chem. 1988 Nov 25;263(33):17499–17507. [PubMed] [Google Scholar]
  27. Orlean P. Enzymes that recognize dolichols participate in three glycosylation pathways and are required for protein secretion. Biochem Cell Biol. 1992 Jun;70(6):438–447. doi: 10.1139/o92-067. [DOI] [PubMed] [Google Scholar]
  28. Palamarczyk G., Lehle L., Mankowski T., Chojnacki T., Tanner W. Specificity of solubilized yeast glycosyl transferases for polyprenyl derivatives. Eur J Biochem. 1980 Apr;105(3):517–523. doi: 10.1111/j.1432-1033.1980.tb04527.x. [DOI] [PubMed] [Google Scholar]
  29. Perez M., Hirschberg C. B. Topography of glycosylation reactions in the rough endoplasmic reticulum membrane. J Biol Chem. 1986 May 25;261(15):6822–6830. [PubMed] [Google Scholar]
  30. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  31. Richards J. B., Hemming F. W. The transfer of mannose from guanosine diphosphate mannose to dolichol phosphate and protein by pig liver endoplasmic reticulum. Biochem J. 1972 Nov;130(1):77–93. doi: 10.1042/bj1300077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Robbins P. W. Genetic regulation of asparagine-linked oligosaccharide synthesis. Biochem Soc Trans. 1991 Aug;19(3):642–645. doi: 10.1042/bst0190642. [DOI] [PubMed] [Google Scholar]
  33. Sasak W., Silverman-Jones C. S., De Luca L. M. Separation of mannosylretinylphosphate from dolichylmannosylphosphate by chromatography on columns of DEAE-sephacel. Anal Biochem. 1979 Sep 1;97(2):298–301. doi: 10.1016/0003-2697(79)90075-7. [DOI] [PubMed] [Google Scholar]
  34. Snider M. D., Sultzman L. A., Robbins P. W. Transmembrane location of oligosaccharide-lipid synthesis in microsomal vesicles. Cell. 1980 Sep;21(2):385–392. doi: 10.1016/0092-8674(80)90475-4. [DOI] [PubMed] [Google Scholar]
  35. Stoll J., Rosenberg L., Carson D. D., Lennarz W. J., Krag S. S. A single enzyme catalyzes the synthesis of the mannosylphosphoryl derivative of dolichol and retinol in rat liver and Chinese hamster ovary cells. J Biol Chem. 1985 Jan 10;260(1):232–236. [PubMed] [Google Scholar]
  36. Trimble R. B., Maley F., Tarentino A. L. Characterization of large oligosaccharide-lipids synthesized in vitro by microsomes from Saccharomyces cerevisiae. J Biol Chem. 1980 Nov 10;255(21):10232–10238. [PubMed] [Google Scholar]
  37. Troy F. A., 2nd Polysialylation: from bacteria to brains. Glycobiology. 1992 Feb;2(1):5–23. doi: 10.1093/glycob/2.1.5. [DOI] [PubMed] [Google Scholar]
  38. Yamashita K., Mizuochi T., Kobata A. Analysis of oligosaccharides by gel filtration. Methods Enzymol. 1982;83:105–126. doi: 10.1016/0076-6879(82)83008-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES