Abstract
The effect of ascorbic acid on the monophenolase activity of tyrosinase, using tyrosine as substrate, has been studied. Over the ranges of ascorbic acid concentration used, no direct effect on the enzyme is found. However, a shortening of the characteristic induction period of the hydroxylation reaction is observed. The evolution of the reaction is dependent on the concentration of ascorbic acid. Low concentrations permit the system to reach the steady state when all ascorbic acid is consumed, whereas high concentrations do not. In the light of these results it is proposed that the influence of ascorbic acid on the reaction is due to its ability to reduce the enzymically generated o-quinones. A relationship between the ascorbic acid concentration, and the induction period generated by it, with the diphenolase activity of tyrosinase is established, which can be used as a basis for the determination of trace amounts of this reducing agent.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARUAH P., SWAIN T. The effect of L-ascorbic acid on the in vitro activity of polyphenoloxidase from potato. Biochem J. 1953 Oct;55(3):392–399. doi: 10.1042/bj0550392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buettner G. R. In the absence of catalytic metals ascorbate does not autoxidize at pH 7: ascorbate as a test for catalytic metals. J Biochem Biophys Methods. 1988 May;16(1):27–40. doi: 10.1016/0165-022x(88)90100-5. [DOI] [PubMed] [Google Scholar]
- Cabanes J., García-Cánovas F., Lozano J. A., García-Carmona F. A kinetic study of the melanization pathway between L-tyrosine and dopachrome. Biochim Biophys Acta. 1987 Feb 20;923(2):187–195. doi: 10.1016/0304-4165(87)90003-1. [DOI] [PubMed] [Google Scholar]
- Cánovas F. G., García-Carmona F., Sánchez J. V., Pastor J. L., Teruel J. A. The role of pH in the melanin biosynthesis pathway. J Biol Chem. 1982 Aug 10;257(15):8738–8744. [PubMed] [Google Scholar]
- Duckworth H. W., Coleman J. E. Physicochemical and kinetic properties of mushroom tyrosinase. J Biol Chem. 1970 Apr 10;245(7):1613–1625. [PubMed] [Google Scholar]
- Harris M. J., Herp A., Pigman W. Metal catalysis in the depolymerization of hyaluronic acid by autoxidants. J Am Chem Soc. 1972 Oct 18;94(21):7570–7572. doi: 10.1021/ja00776a047. [DOI] [PubMed] [Google Scholar]
- Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
- Hearing V. J., Ekel T. M. Mammalian tyrosinase. A comparison of tyrosine hydroxylation and melanin formation. Biochem J. 1976 Sep 1;157(3):549–557. doi: 10.1042/bj1570549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KERTESZ D. Cuivre, polyphénoloxydase (tyrosinase), catéchol et acide ascorbique. Bull Soc Chim Biol (Paris) 1951;33(10):1400–1408. [PubMed] [Google Scholar]
- KERTESZ D. Tyrosinase and polyphenoloxidase. The role of metallic ions in melanogenesis. Biochim Biophys Acta. 1952;9(2):170–179. doi: 10.1016/0006-3002(52)90144-3. [DOI] [PubMed] [Google Scholar]
- MASON H. S. Structures and functions of the phenolase complex. Nature. 1956 Jan 14;177(4498):79–81. doi: 10.1038/177079a0. [DOI] [PubMed] [Google Scholar]
- McIntyre R. J., Vaughan P. F. Kinetic studies on the hydroxylation of p-coumaric acid to caffeic acid by spinach-beet phenolase. Biochem J. 1975 Aug;149(2):447–461. doi: 10.1042/bj1490447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pomerantz S. H., Murthy V. V. Purification and properties of tyrosinases from Vibrio tyrosinaticus. Arch Biochem Biophys. 1974 Jan;160(1):73–82. doi: 10.1016/s0003-9861(74)80010-x. [DOI] [PubMed] [Google Scholar]
- Pomerantz S. H. The tyrosine hydroxylase activity of mammalian tyrosinase. J Biol Chem. 1966 Jan 10;241(1):161–168. [PubMed] [Google Scholar]
- Poyer J. L., McCay P. B. Reduced triphosphopyridine nucleotide oxidase-catalyzed alterations of membrane phospholipids. IV. Dependence on Fe3+. J Biol Chem. 1971 Jan 10;246(1):263–269. [PubMed] [Google Scholar]
- Rodriguez-López J. N., Ros-Martínez J. R., Varón R., García-Cánovas F. Calibration of a Clark-Type oxygen electrode by tyrosinase-catalyzed oxidation of 4-tert-butylcatechol. Anal Biochem. 1992 May 1;202(2):356–360. doi: 10.1016/0003-2697(92)90118-q. [DOI] [PubMed] [Google Scholar]
- Rodríguez-López J. N., Tudela J., Varón R., García-Carmona F., García-Cánovas F. Analysis of a kinetic model for melanin biosynthesis pathway. J Biol Chem. 1992 Feb 25;267(6):3801–3810. [PubMed] [Google Scholar]
- Rodríguez-López J. N., Tudela J., Varón R., García-Cánovas F. Kinetic study on the effect of pH on the melanin biosynthesis pathway. Biochim Biophys Acta. 1991 Feb 15;1076(3):379–386. doi: 10.1016/0167-4838(91)90480-n. [DOI] [PubMed] [Google Scholar]
- Tripathi R. K., Chaya Devi C., Ramaiah A. pH-dependent interconversion of two forms of tyrosinase in human skin. Biochem J. 1988 Jun 1;252(2):481–487. doi: 10.1042/bj2520481. [DOI] [PMC free article] [PubMed] [Google Scholar]
