Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2024 Jun 19;53(3):376–381. [Article in Chinese] doi: 10.3724/zdxbyxb-2023-0567

Hippo信号通路效应分子在风湿免疫系统疾病中的作用研究进展

Research progress on Hippo signaling pathway effector molecules in rheumatic immune system diseases

GAO Jie 1,2,3, PI Caihong 1,2, PAN Junmei 1, ZHOU Wei 1,2,✉,
Editors: 沈 敏, 沈 洁
PMCID: PMC11348685  PMID: 38899353

Abstract

The core components of the Hippo signaling pathway encompass upstream regulatory molecules, core kinase cascade complexes, and downstream transcriptional regulation complexes. This pathway modulates cellular behaviors by influencing the effector molecules of its core components and plays a pivotal role in immune regulation. Effector molecules,such as Yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), transcriptional enhanced associate domain transcriptional factor (TEAD), monopolar spindle-one binder (MOB1), large tumor suppressor (LATS), can stimulate fibroblast-like synovial cell migration and invasion in rheumatoid arthritis, regulate osteoarthritis disease progression, promote pathological new bone formation in ankylosing spondylitis, sustain submandibular gland development while delaying Sjogren’s syndrome progression, mediate alpha-smooth muscle actin in systemic sclerosis, and refine the regulation of target genes associated with pulmonary fibrosis. This article provides an overview of the regulatory mechanisms involving Hippo signaling pathway-related effector molecules in the pathogenesis and progression of rheumatic immune system diseases, to serve as a reference for exploring novel therapeutic targets of rheumatic immune system diseases.

Keywords: Hippo signaling pathway, Rheumatism, Pathogenesis, Review


风湿免疫系统疾病是一类累及骨、关节及其周围软组织的免疫系统疾病,严重时可累及全身组织及脏器1,其发病机制复杂多样。有学者认为,机体免疫系统紊乱产生的自身抗体会攻击靶器官,从而导致风湿免疫系统疾病发生2;也有学者认为,刺激自身炎症性因子的释放可引起自身免疫相关反应,导致疾病的发生3。目前,风湿免疫系统疾病的用药较为单一,且部分难治性风湿病如类风湿关节炎疗效不佳4。因此,研发新一代的治疗药物至关重要。已有研究发现,Hippo通路效应分子在风湿免疫系统疾病进程中发挥重要的调控作用,目前已有药物应用于临床5

Hippo信号通路的核心组分包括上游调控信号(如细胞极性、机械信号、细胞密度、可溶性因子和压力信号等)、核心激酶级联复合体(如MST1/2、LATS、MOB1)和下游转录调控复合体(如YAP、TAZ)6-7。上调或下调Hippo通路中相关效应分子的表达可调控下游靶基因的表达,从而影响风湿免疫系统疾病的发生发展。本文就Hippo通路效应分子与风湿免疫系统疾病的相关研究进展进行综述,以期为寻找风湿免疫系统疾病临床治疗的新靶标提供参考。

1. Hippo通路效应分子促进类风湿关节炎成纤维细胞样滑膜细胞迁移和侵袭

RA-FLS在类风湿关节炎的发病中发挥了关键作用。研究表明YAP/TAZ可能在RA-FLS的异常生物学行为中发挥作用8-9。有研究发现,与正常关节滑膜细胞比较,RA-FLS中YAP和TAZ蛋白及mRNA水平显著上调;敲除YAP/TAZ可通过调控EMT关键基因的表达,抑制RA-FLS的迁移和侵袭,延缓软骨和骨破坏9。6-酮-2-羧酸甲酯可以通过抑制YAP表达进一步下调MMP水平,减少RA-FLS迁移和侵袭10。还有研究发现,在佐剂诱导的关节炎小鼠的关节滑膜及RA-FLS中,IL-6可通过JAK信号激活YAP,促进YAP与蜗牛家族转录抑制因子1结合,从而上调MMP9、MMP13和MMP14以及炎症细胞因子IL-34表达,加速疾病进程11。此外,YAP入核后可以增强SMAD蛋白活性,促进动力蛋白相关蛋白1的合成,上调IL-6、β1干扰素、趋化因子配体2和IL-8等表达,促进炎症反应12-13。连接蛋白Ezrin可以促进YAP核定位,抑制PI3K/Akt信号通路,诱导血管生成素-2活化,促进血管生成、萌发和血管重塑,参与类风湿关节炎滑膜血管翳的生成14。因此,核定位的YAP/TAZ可调控下游靶基因表达,刺激RA-FLS生物学行为,可能成为类风湿关节炎的治疗新靶点。

2. Hippo通路效应分子对骨关节炎疾病进程的不同调控作用

有研究发现,骨关节炎小鼠的关节间隙软骨浅层中积累了大量的衰老MSC,而过表达YAP可下调关节软骨中MMP13、IL-6、P21、丝氨酸蛋白酶抑制蛋白1、死亡相关蛋白激酶1及半胱氨酸蛋白酶4等的表达,促进Col2α1、Acan等基因的表达,减少衰老MSC数,延缓关节软骨侵蚀和裂隙形成15-16,表明在MSC中过表达YAP可延缓骨关节炎进程。也有研究发现,Runx1可促进骨关节炎小鼠YAP入核,使Wnt信号通路中轴蛋白、糖原合成酶激酶3等去磷酸化,解聚连环蛋白1复合体,下调Adamts5Mmp13Col10α1的表达,抑制NF-κB信号通路活性,阻止软骨降解,延缓骨关节炎发展17-18。此外,机械应力可通过激活YAP表达,促进软骨祖细胞增殖,加快软骨修复,维持关节新陈代谢19。但另有研究显示,维替泊芬可使骨赘细胞中高表达的YAP失活,抑制细胞增殖,减少体内骨赘形成20。上述研究表明,Hippo/YAP在骨关节炎的病程中发挥重要的作用,但其对骨关节炎产生的临床表象的差异可能归因于对软骨细胞和骨赘细胞的不同调控作用,这还有待于进一步研究。

3. Hippo通路效应分子促进病理性新骨形成推动强直性脊柱炎疾病进程

研究发现,在强直性脊柱炎患者和动物模型的结缔组织中,溶血磷脂酸可以促进YAP入核,加速肌动蛋白细胞骨架的解聚,抑制生理性软骨形成21。去磷酸化的YAP与Runx2结合后,以Runx2-YAP复合体形式入核,下调Col10α1表达,进一步抑制正常软骨细胞成熟22。Hippo通路的核心激酶级联MOB1a/b丢失也可促进YAP入核,抑制Sox9表达,从而减缓正常软骨细胞的增殖和分化23。也有研究证实,强直性脊柱炎患者外周血单核细胞中TAZ表达显著增加,而MST1/2和核NDR1/2表达显著降低,并且MST可以通过NDR激活依赖TAZ的非典型Hippo通路,促进炎性Th17细胞的分化,加速强直性脊柱炎的疾病进程24。以上研究均提示,活化的YAP和TAZ入核后可通过抑制强直性脊柱炎中软骨细胞成熟,促进病理性新骨形成,从而推动强直性脊柱炎进程。此外,有研究对高通量基因表达数据库中强直性脊柱炎组织和骨关节炎组织的mRNA微阵列数据集进行分析,筛选并识别出两者的差异表达基因Yap,推测其作为关键因子参与了强直性脊柱炎的进展25

4. Hippo通路效应分子维持颌下腺发育延缓干燥综合征疾病进程

干燥综合征是一种主要累及唾液腺和泪腺的自身免疫性疾病。在干燥综合征小鼠模型颌下腺细胞中,TAZ与EMT关键蛋白如E钙黏蛋白表达减少;当向颌下腺细胞中注入脂肪来源干细胞,TAZ和E钙黏蛋白表达增加,可延缓干燥综合征的进程26。另有研究显示,Hippo通路的核心激酶级联LATS在发育的颌下腺细胞中表达较高,抑制LATS可使颌下腺的主分支区中心区域变平,末端芽变大,整体分支减少,可延缓颌下腺细胞发育,表明Hippo信号通路重要组分LATS在维持颌下腺导管发育中发挥重要作用27。磷酸化的LATS1/2可使转录共激活因子YAP/TAZ滞留在细胞质中,与14-3-3蛋白结合后被泛素化降解,抑制其入核后对下游靶基因的调控28。Hwang等29发现敲除TAZ/YAP可下调涎腺上皮细胞中肿瘤坏死因子-α表达,进而抑制溶血磷脂酸诱导的唾液上皮细胞凋亡,延缓疾病进程。Miyachi等30发现MOB1敲除小鼠的颌下腺中TAZ/YAP-TEAD复合体减少,下游靶基因Sox2Sox10的表达显著降低,导致腺泡分泌单位减少,未成熟的发育不良导管细胞数增加,唾液分泌量减少,并伴有颌下腺中轻度炎症细胞浸润和纤维化,而腺体的结构缺陷则是导致人类干燥综合征唾液腺功能障碍的重要原因之一。综上所述,激活Hippo通路可维持颌下腺导管的发育,延缓干燥综合征进展。

5. Hippo通路效应分子介导α-平滑肌肌动蛋白影响系统性硬化病

系统性硬化病是一种以皮肤和内脏器官纤维化以及血管病变为特征的结缔组织疾病。研究表明,富马酸二甲酯可通过丝氨酸/苏氨酸激酶1通路阻止YAP/TAZ的核定位和转录,使博来霉素诱导的系统性硬化病模型小鼠中α-SMA表达显著减少,逆转系统性硬化病小鼠的皮肤变厚和脂肪层丢失31。敲除YAP/TAZ可下调系统性硬化病模型小鼠皮肤及肺组织中α-SMA的表达,减轻皮肤的炎症、厚度及肺组织的炎症、纤维化;进一步的基因变异分析显示,与正常对照组比较,系统性硬化病患者成纤维细胞中YAP/TAZ明显富集,两组YAP/TAZ的表达水平与系统性硬化病的严重程度均呈正相关,证明了YAP/TAZ可能加速了系统性硬化病的进展32。维替泊芬可以通过抑制YAP表达,选择性地降低结缔组织生长因子、Col1和TGF-β的表达,延缓系统性硬化病皮肤成纤维细胞的持续性纤维化,减缓皮肤纤维化33。以上研究表明,YAP或TAZ抑制剂可能成为一种新的、有价值的治疗皮肤纤维化的靶向药。

6. Hippo通路效应分子介导相关靶基因调控肺纤维化

间质性肺疾病/肺纤维化作为风湿系统疾病的严重并发症,影响疾病的预后34。在肺纤维化小鼠模型中,TGF-β通过促进TAZ入核,上调TAZ-TEAD复合物水平,促进细胞表面膜蛋白转铁蛋白受体的表达,使细胞内亚铁离子浓度升高,延缓脂质过氧化,促进成纤维细胞向肌成纤维细胞转化,抑制肺纤维化35。过表达YAP可促进肺成纤维细胞中Twist1转录,Twist1与TEAD-1结合后可抑制Col1α1Col3α1及结缔组织生长因子合成;下调YAP可抑制纤维化相关蛋白表达36。与正常小鼠比较,肺纤维化模型小鼠肺成纤维细胞中DRD1表达上调,而DRD1的选择性受体二氢氧嘧啶可阻止YAP/TAZ核定位,使成纤维细胞从收缩、增殖和基质沉积状态向基质降解、软化状态转化,延缓细胞外基质硬化和组织纤维化进程37。在肺纤维化患者2型肺泡细胞中,YAP/TAZ同时失活或单独敲除TAZ会损害肺泡上皮细胞再生,加剧博来霉素损伤后肺纤维化。但是,单独敲除TAZ可促进2型肺泡细胞向1型肺泡细胞分化,显著减少Col1α1表达,促进肺泡上皮细胞再生,阻止肺纤维化进程38。研究结果提示,靶向抑制YAP而非TAZ介导的转录可能有助于治疗肺纤维化。

7. Hippo通路效应分子调控其他风湿免疫系统疾病进程

有研究发现,在系统性红斑狼疮患者的皮肤角质形成细胞中,Hippo通路调节因子C2结构域的过表达激活了LATS,使YAP滞留在细胞质内,减少了YAP入核,增加了紫外线诱导的细胞死亡39。除此之外,研究发现Fkn基因敲除的狼疮性肾炎小鼠模型组体内Hippo通路激活,炎症指标上调,细胞凋亡增加;当同时进行敲除Fkn基因和抑制YAP表达操作时,可以改善巨噬细胞活性抑制,减轻狼疮性肾炎导致的肾损伤40。有团队进行了银屑病性关节炎患者血细胞及皮肤成纤维细胞的分子图谱分析,结果发现MST介导的Hippo通路相关效应分子存在显著差异,且通过治疗后,有应答组炎症指标明显下调,而无应答组中MST1介导的Hippo信号通路在基线水平明显上调,因此认为其可以作为早期治疗反应的潜在生物学标志物41

8. 结语

近年来,Hippo通路效应分子在风湿免疫系统疾病中的作用机制研究越来越广泛和深入。由于Hippo通路受诸多上下游信号调控,其是否通过其他途径参与调控下游靶基因活性仍值得深入探讨。深入剖析Hippo通路效应分子调控风湿免疫系统疾病的可能机制,可为研发靶向Hippo通路效应分子的药物提供理论支持,从而为风湿免疫系统疾病的临床治疗提供新思路。Hippo通路相关药物的研发目前大多基于抑制细胞增殖和迁移的机制,主要用于癌症治疗。风湿免疫系统疾病治疗药物与癌症免疫治疗药物具有交叉性42,期待未来Hippo通路相关的药物能够用于治疗风湿免疫系统疾病,为难治性风湿免疫系统疾病的临床用药提供更多的选择。

Acknowledgments

研究得到国家自然科学基金(82101890)和江苏省自然科学基金(BK20190904)支持

Acknowledgments

This work was supported by the National Natural Science Foundation of China (82101890), Natural Science Foundation of Jiangsu Province (BK20190904)

[缩略语]

哺乳动物STE20样蛋白(mammalian sterile 20-like kinase,MST);大肿瘤抑制激酶(large tumor suppressor,LATS);单极纺锤体-结合蛋白1(monopolar spindle-one binder,MOB1);Yes相关蛋白(Yes-associated protein,YAP);转录共激活因子PDZ结合基序(transcriptional coactivator with PDZ-binding motif,TAZ);类风湿关节炎成纤维细胞样滑膜细胞(rheumatoid arthritis fibroblast-like synoviocyte,RA-FLS);信使RNA(messenger RNA,mRNA);上皮-间质转化(epithelial-mesenchymal transition,EMT);基质金属蛋白酶(matrix metalloproteinase,MMP);Sma和Mad相关蛋白(Sma- and Mad-related protein,SMAD);磷脂酰肌醇3-激酶(phosphatidylinositide 3-kinase,PI3K);蛋白激酶B(protein kinase B,Akt);胶原蛋白(collagen,Col);间充质干细胞(mesenchymal stem cell,MSC);Runt相关转录因子(Runt-related transcription factor,Runx);性别决定区Y框(sex determining region Y box,SOX);Dbf2相关激酶(nuclear Dbf2-related kinase,NDR);转录增强结构域转录因子(transcriptional enhanced associate domain transcriptional factor,TEAD);平滑肌肌动蛋白(smooth muscle actin,SMA);转化生长因子(transforming growth factor,TGF);多巴胺受体D(dopamine receptor D,DRD)

利益冲突声明

所有作者均声明不存在利益冲突

Conflict of Interests

The authors declare that there is no conflict of interests

参考文献(References)

  • 1.葛均波, 徐永健, 王 辰. 内科学[M]. 9版. 北京: 人民卫生出版社, 2018: 798. [Google Scholar]; GE Junbo, XU Yongjian, WANG Chen. Internal medicine[M]. 9th ed. Beijing: People’s Health Pub-lishing House, 2018: 798. (in Chinese) [Google Scholar]
  • 2.RICHARD-EAGLIN A, SMALLHEER B A. Immuno-suppressive/autoimmune disorders[J]. Nurs Clin North Am, 2018, 53(3): 319-334. 10.1016/j.cnur.2018.04.002 [DOI] [PubMed] [Google Scholar]
  • 3.SURACE A, HEDRICH C M. The role of epigenetics in autoimmune/inflammatory disease[J]. Front Immunol, 2019, 10: 1525. 10.3389/fimmu.2019.01525 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.STANWAY J A, ISAACS J D. Tolerance-inducing medicines in autoimmunity: rheumatology and beyond[J/OL]. Lancet Rheumatol, 2020, 2(9): e565-e575. 10.1016/s2665-9913(20)30100-4 [DOI] [PubMed] [Google Scholar]
  • 5.WU D, LUO Y, LI T, et al. Systemic complications of rheumatoid arthritis: focus on pathogenesis and treat-ment[J]. Front Immunol, 2022, 13: 1051082. 10.3389/fimmu.2022.1051082 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.ZEYBEK N D, BAYSAL E, BOZDEMIR O, et al. Hippo signaling: a stress response pathway in stem cells[J]. Curr Stem Cell Res Ther, 2021, 16(7): 824-839. 10.2174/1574888x16666210712100002 [DOI] [PubMed] [Google Scholar]
  • 7.GIBAULT F, BAILLY F, CORVAISIER M, et al. Molecular features of the YAP inhibitor verteporfin: synthesis of hexasubstituted dipyrrins as potential inhibitors of YAP/TAZ, the downstream effectors of the Hippo pathway[J]. ChemMedChem, 2017, 12(12): 954-961. 10.1002/cmdc.201700063 [DOI] [PubMed] [Google Scholar]
  • 8.DU H, ZHANG X, ZENG Y, et al. A novel phytoche-mical, DIM, inhibits proliferation, migration, invasion and TNF-α induced inflammatory cytokine production of synovial fibroblasts from rheumatoid arthritis patients by targeting MAPK and AKT/mTOR signal pathway[J]. Front Immunol, 2019, 10: 1620. 10.3389/fimmu.2019.01620 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.ZHOU W, SHEN Q, WANG H, et al. Knockdown of YAP/TAZ inhibits the migration and invasion of fibroblast synovial cells in rheumatoid arthritis by regulating autophagy[J]. J Immunol Res, 2020, 2020: 9510594. 10.1155/2020/9510594 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.ZHANG Z, WANG Y, XU Q, et al. Methyl canthin-6-one-2-carboxylate restrains the migration/invasion pro-perties of fibroblast-like synoviocytes by suppressing the Hippo/YAP signaling pathway[J]. Pharmaceuticals (Basel), 2023, 16(10): 1440. 10.3390/ph16101440 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.SYMONS R A, COLELLA F, COLLINS F L, et al. Targeting the IL-6-Yap-Snail signalling axis in synovial fibroblasts ameliorates inflammatory arthritis[J]. Ann Rheum Dis, 2022, 81(2): 214-224. 10.1136/annrheumdis-2021-220875 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.CAIRE R, AUDOUX E, COURBON G, et al. YAP/TAZ: key players for rheumatoid arthritis severity by driving fibroblast like synoviocytes phenotype and fibro-inflammatory response[J]. Front Immunol, 2021, 12: 791907. 10.3389/fimmu.2021.791907 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.YU Y, MA M, LI C, et al. Irisin mitigates rheumatoid arthritis by suppressing mitochondrial fission via inhibi-ting YAP-Drp1 signaling pathway[J]. Int Immuno-pharmacol, 2024, 127: 111443. 10.1016/j.intimp.2023.111443 [DOI] [PubMed] [Google Scholar]
  • 14.CHEN Q, FAN K, CHEN X, et al. Ezrin regulates synovial angiogenesis in rheumatoid arthritis through YAP and Akt signalling[J]. J Cell Mol Med, 2021, 25(19): 9378-9389. 10.1111/jcmm.16877 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.FU L, HU Y, SONG M, et al. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis[J/OL]. PLoS Biol, 2019, 17(4): e3000201. 10.1371/journal.pbio.3000201 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.LI H N, JIN B M, ZHANG H, et al. YAP plays a pro-tective role in T-2 toxin-induced inhibition of chondrocyte proliferation and matrix degradation[J]. Toxicon, 2022, 215: 49-56. 10.1016/j.toxicon.2022.06.005 [DOI] [PubMed] [Google Scholar]
  • 17.ZHANG Y, ZUO T, MCVICAR A, et al. Runx1 is a key regulator of articular cartilage homeostasis by orche-strating YAP, TGFβ, and Wnt signaling in articular cartilage formation and osteoarthritis[J]. Bone Res, 2022, 10(1): 63. 10.1038/s41413-022-00231-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.ZHANG Y, CHEN H, WU J, et al. Deficiency of Cbfβ in articular cartilage leads to osteoarthritis-like phenotype through Hippo/Yap, TGFβ, and Wnt/β-catenin signaling pathways[J]. Int J Biol Sci, 2024, 20(6): 1965-1977. 10.7150/ijbs.90250 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.YAO W, MA A, ZHANG Z, et al. Intermittent hydro-static pressure promotes cartilage repair in an inflam-matory environment through Hippo-YAP signaling in vitro and in vivo [J]. Biomed Res Int, 2022, 2022: 3215461. 10.1155/2022/3215461 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.GUI T, HUAN S, ZHUANG T, et al. Hippo/YAP1 inhibition by verteporfin attenuates osteophyte formation in a mouse surgical osteoarthritis model[J]. Biomater Adv, 2023, 149: 213413. 10.1016/j.bioadv.2023.213413 [DOI] [PubMed] [Google Scholar]
  • 21.LI Z, CHEN S, CUI H, et al. Tenascin-C-mediated suppression of extracellular matrix adhesion force pro-motes entheseal new bone formation through activation of Hippo signalling in ankylosing spondylitis[J]. Ann Rheum Dis, 2021, 80(7): 891-902. 10.1136/annrheumdis-2021-220002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.DENG Y, WU A, LI P, et al. Yap1 regulates multiple steps of chondrocyte differentiation during skeletal development and bone repair[J]. Cell Rep, 2016, 14(9): 2224-2237. 10.1016/j.celrep.2016.02.021 [DOI] [PubMed] [Google Scholar]
  • 23.GOTO H, NISHIO M, TO Y, et al. Loss of Mob1a/b in mice results in chondrodysplasia due to YAP1/TAZ-TEAD-dependent repression of SOX9[J]. Development, 2018, 145(6): dev159244. 10.1242/dev.159244 [DOI] [PubMed] [Google Scholar]
  • 24.XU X, LIU W, LIU Y, et al. Molecules in the hippo pathway that regulate Th17 differentiation reveal the severity of ankylosing spondylitis[J/OL]. Int J Rheum Dis, 2024, 27(1): e15044. 10.1111/1756-185x.15044 [DOI] [PubMed] [Google Scholar]
  • 25.FENG X, ZHU S, YAN Z, et al. PDGFRB as a potential therapeutic target of ankylosing spondylitis: validation following bioinformatics analysis[J]. Cell Mol Biol (Noisy-le-grand), 2020, 66(6): 127-134. 10.14715/cmb/2020.66.6.23 [DOI] [PubMed] [Google Scholar]
  • 26.LI Z, FAN X, XU X, et al. Adipose-derived stem cells postpone the progression of Sjögren’s syndrome by upregulating the Hippo signaling pathway[J]. Exp Ther Med, 2022, 24(3): 587. 10.3892/etm.2022.11524 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.ENGER T B, SAMAD-ZADEH A, BOUCHIE M P, et al. The Hippo signaling pathway is required for salivary gland development and its dysregulation is associated with Sjogren’s syndrome[J]. Lab Invest, 2013, 93(11): 1203-1218. 10.1038/labinvest.2013.114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.LI F L, FU V, LIU G, et al. Hippo pathway regulation by phosphatidylinositol transfer protein and phospho-inositides[J]. Nat Chem Biol, 2022, 18(10): 1076-1086. 10.1038/s41589-022-01061-z [DOI] [PubMed] [Google Scholar]
  • 29.HWANG S M, JIN M, SHIN Y H, et al. Role of LPA and the Hippo pathway on apoptosis in salivary gland epithelial cells[J/OL]. Exp Mol Med, 2014, 46(12): e125. 10.1038/emm.2014.77 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.MIYACHI Y, NISHIO M, OTANI J, et al. TAZ inhibits acinar cell differentiation but promotes immature ductal cell proliferation in adult mouse salivary glands[J]. Genes Cells, 2021, 26(9): 714-726. 10.1111/gtc.12879 [DOI] [PubMed] [Google Scholar]
  • 31.TOYAMA T, LOONEY A P, BAKER B M, et al. The-rapeutic targeting of TAZ and YAP by dimethyl fumarate in systemic sclerosis fibrosis[J]. J Invest Dermatol, 2018, 138(1): 78-88. 10.1016/j.jid.2017.08.024 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.WU D, WANG W, LI X, et al. Single-cell sequencing reveals the antifibrotic effects of YAP/TAZ in systemic sclerosis[J]. Int J Biochem Cell Biol, 2022, 149: 106257. 10.1016/j.biocel.2022.106257 [DOI] [PubMed] [Google Scholar]
  • 33.SHI-WEN X, RACANELLI M, ALI A, et al. Verteporfin inhibits the persistent fibrotic phenotype of lesional scleroderma dermal fibroblasts[J]. J Cell Commun Signal, 2021, 15(1): 71-80. 10.1007/s12079-020-00596-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.LUPPI F, SEBASTIANI M, SALVARANI C, et al. Acute exacerbation of interstitial lung disease associated with rheumatic disease[J]. Nat Rev Rheumatol, 2022, 18(2): 85-96. 10.1038/s41584-021-00721-z [DOI] [PubMed] [Google Scholar]
  • 35.ZHOU P, QIN Y, FU X, et al. Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model[J]. Redox Biol, 2022, 57: 102509. 10.1016/j.redox.2022.102509 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.CHEN Y, ZHAO X, SUN J, et al. YAP1/Twist promotes fibroblast activation and lung fibrosis that conferred by miR-15a loss in IPF[J]. Cell Death Differ, 2019, 26(9): 1832-1844. 10.1038/s41418-018-0250-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.HAAK A J, KOSTALLARI E, SICARD D, et al. Selective YAP/TAZ inhibition in fibroblasts via dopa-mine receptor D1 agonism reverses fibrosis[J]. Sci Transl Med, 2019, 11(516): eaau6296. 10.1126/scitranslmed.aau6296 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.WARREN R, LYU H, KLINKHAMMER K, et al. Hippo signaling impairs alveolar epithelial regeneration in pulmonary fibrosis[J/OL]. Elife, 2023, 12: e85092. 10.7554/elife.85092 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.HILE G A, COIT P, XU B, et al. Regulation of pho-tosensitivity by the Hippo pathway in lupus skin[J]. Arthritis Rheumatol, 2023, 75(7): 1216-1228. 10.1002/art.42460 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.ZUO Y, PAN X, WANG X, et al. FKN secreted by kidney epithelial cells regulates macrophage activation in lupus nephritis via the Hippo signaling pathway[J]. Lupus, 2023, 32(12): 1381-1393. 10.1177/09612033231204068 [DOI] [PubMed] [Google Scholar]
  • 41.GRIVAS A, GRIGORIOU M, MALISSOVAS N, et al. Combined-whole blood and skin fibroblasts- trans-criptomic analysis in psoriatic arthritis reveals molecular signatures of activity, resistance and early response to treatment[J]. Front Immunol, 2022, 13: 964274. 10.3389/fimmu.2022.964274 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.NÓVOA MEDINA F J, RODRÍGUEZ ABREU D. Immunotherapy, cancer and rheumatic diseases[J]. Reumatol Clin (Engl Ed), 2019, 15(5): 249-251. 10.1016/j.reumae.2019.03.002 [DOI] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES