Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2024 Jun 19;53(3):382–389. [Article in Chinese] doi: 10.3724/zdxbyxb-2023-0585

钠-葡萄糖耦联转运体2抑制剂对代谢综合征相关代谢紊乱的作用研究进展

Research progress on the effects of sodium-glucose linked transporter 2 inhibitors on multiple metabolic disorders in metabolic syndrome

XU Chunxiang 1,4,#, CAI Xiaoxia 2,5,#, QIU Xingyu 3, ZHAO Liang 1,4,✉,
Editors: 沈 敏, 沈 洁
PMCID: PMC11348696  PMID: 38899358

Abstract

Metabolic syndrome is a complex group of metabolic disorders with an increasing global incidence rate, posing a serious threat to human health. Sodium-glucose linked transporter 2 (SGLT2) inhibitors are a new type of oral hypoglycemic drug. SGLT2 inhibitors not only lower blood glucose level in a non-insulin-dependent manner by inhibiting glucose reabsorption by renal proximal convoluted tubular epithelial cell to promote urinary glucose excretion, but also by improving islet β cell function, reducing inflammatory responses, and inhibiting oxidative stress. In addition, SGLT2 inhibitors can reduce body weight through osmotic diuresis and increase fat metabolism; reduce blood pressure by inhibiting excessive activation of sympathetic nervous system and by improving vascular function. They can also improve blood lipids by increasing degradation of triacylglycerol; reduce blood uric acid by promoting uric acid excretion in kidney and intestine, and by reducing uric acid synthesis. This article reviews the effects and mechanisms of SGLT2 inhibitors on multiple metabolic disorders in metabolic syndrome and explores their potential application in metabolic syndrome treatment.

Keywords: Sodium-glucose linked transporter 2 inhibitors, Metabolic syndrome, Diabetes mellitus, Weight loss, Hypertension, Dyslipidemia, Hyperuricemia, Review


代谢综合征是一组复杂的代谢紊乱症候群,包括高血糖、肥胖、高血压、血脂异常和高尿酸血症等病症,常累及人体多个器官如心脏、肾脏、肝脏并导致心血管疾病、肾脏疾病、非酒精性脂肪肝等多种并发症。近年来,代谢综合征的发病率在全球范围内不断升高1,在我国20岁及以上人群中,代谢综合征的患病率已高达31.1%,并且在女性、45岁及以上人群以及城市居民中患病率更高2。目前,代谢综合征治疗尚无特效药,多采用综合治疗措施,包括改善患者饮食结构、增加运动、限酒、戒烟等生活方式的干预以及联合使用降糖、降压和调脂等药物治疗,但患者依从性差、联合用药存在副作用等问题较多,故疗效有限。

SGLT2抑制剂是一种新型的口服降糖药物,其通过抑制肾脏近曲小管上皮细胞对葡萄糖的重吸收促进尿糖排泄这种非胰岛素依赖的方式降低血糖。SGLT2抑制剂达格列净、卡格列净和恩格列净于2012—2014年陆续在欧美上市,2017年起也陆续在国内应用于临床3。SGLT2抑制剂除了可以显著降低血糖水平外,还具有减轻体重、降低血压、调节血脂、降低血尿酸等作用,《2023年欧洲心脏病学会糖尿病患者心血管疾病管理指南》更是将SGLT2抑制剂作为心血管保护效益的一线推荐药物4。此外,动物及临床研究也表明SGLT2抑制剂的多靶点作用在代谢综合征相关的多种代谢紊乱治疗中显示出巨大潜力5-7。因此,本文就近年来SGLT2抑制剂对代谢综合征中多种代谢紊乱的改善作用及其相关调控机制进行综述。

1. 钠-葡萄糖耦联转运体2抑制剂的降血糖作用

T2DM占糖尿病90%以上,传统T2DM治疗药物主要为小分子口服药物,常见的有磺脲类、格列奈类、双胍类、α-糖苷酶抑制剂、噻唑烷二酮类、二肽基肽酶-4抑制剂等,其疗效大都建立在患者尚存的胰岛功能基础之上。随着T2DM病程的进展,胰岛素分泌功能及胰岛素敏感性逐渐衰退,这些药物的疗效也逐渐降低,难以达到控制血糖的目标。此外,上述药物不能很好地改善心血管疾病的预后以及延缓糖尿病肾病等并发症的进展8-9。达格列净、恩格列净、卡格列净是目前研究较为深入并且已经应用于临床的SGLT2抑制剂。多个具有里程碑意义的临床多中心随机对照试验研究均证明SGLT2抑制剂具有良好的降糖疗效,表现为显著降低T2DM患者糖化血红蛋白水平和空腹血糖水平,如研究达格列净的DECLARE-TIMI58(NCT0173053410和DAPA-HF(NCT0303612411、研究恩格列净的EMPA-REG OUTCOME(NCT0113167612和EMPEROR-REDUCED(NCT0305797713以及研究卡格列净的CANVAS(NCT0103262914和CREDENCE(NCT0206579115等。此外,上述研究还证明SGLT2抑制剂具有降低T2DM患者心血管不良事件风险以及保护肾脏的作用,表现为显著降低T2DM患者心血管疾病病死率和因心力衰竭住院的风险,延缓糖尿病肾病、慢性肾脏病、肾小球滤过率下降和蛋白尿等疾病进程,获得国内外相关指南的一致推荐416-17

目前发现SGLT2抑制剂可通过以下机制降低血糖:①抑制葡萄糖的重吸收。SGLT2抑制剂能抑制肾脏近曲小管上皮细胞对葡萄糖的重吸收,促进尿糖排泄,从而降低血糖,改善胰岛素抵抗和高胰岛素血症18。②改善胰岛β细胞功能。除了直接促进尿糖排泄来降低血糖外,恩格列净还可以改善T2DM患者胰岛β细胞的功能,并增强β细胞对葡萄糖的敏感性19。另有报道称,Sglt2 -/-糖尿病小鼠中β细胞数显著增加,β细胞的凋亡水平和死亡率显著降低,这表明SGLT2的缺失保护了糖尿病环境中的β细胞功能、改善了葡萄糖稳态并增强了胰岛素敏感性20。此外,SGLT2抑制剂还可能通过影响胰岛α细胞的功能间接保护胰岛β细胞及其功能。已有研究表明,达格列净可增加T2DM患者β细胞的自我复制,并诱导α细胞向β细胞转化,这些作用可能由α细胞分泌的胰高血糖素样肽-1介导21。③减少炎症反应。有研究显示,SGLT2抑制剂可减少糖尿病患者的内脏脂肪,降低脂肪细胞诱导的炎症反应并调节能量稳态,同时抑制高脂诱导的胰岛素抵抗,从而保持血糖平稳22。④抑制氧化应激。氧化应激可抑制胰岛素受体的酪氨酸磷酸化,影响胰岛素信号通路转导,导致胰岛素抵抗23。SGLT2抑制剂可通过多种机制如调节RAAS活性、改善线粒体功能障碍、抑制炎症诱导的自由基产生等发挥抗氧化作用,改善胰岛素抵抗,从而维持血糖稳定24-26

鉴于SGLT2抑制剂不依赖胰岛素的降糖机制,其有望成为T1DM患者除胰岛素之外的有效辅助降糖药物。一项临床荟萃分析研究指出,SGLT2抑制剂可以显著降低T1DM患者的糖化血红蛋白水平27。高滤过状态是T1DM早期出现的肾血流动力学异常。有研究显示,SGLT2抑制剂可使血容量和肾小球滤过率降低,从而改善T1DM患者肾脏高滤过状态,起到保护心脏和肾脏功能的作用,但其是否具有远期保护作用仍需要临床研究进一步证实28。目前尚无SGLT2抑制剂在T1DM或T2DM儿童患者中的Ⅲ期临床试验结果。但有研究显示,卡格列净和恩格列净在青少年T2DM患者中的药代动力学和药效学结果与成人类似29-30。需要注意的是,接受SGLT2抑制剂治疗会增加T1DM患者糖尿病酮症酸中毒风险,因此需要进一步研究来更好地预防药物不良反应31

2. 钠-葡萄糖耦联转运体2抑制剂的减重作用

肥胖尤其是腹部肥胖是代谢综合征的重要病理生理特征。尽管目前SGLT2抑制剂尚未被用于减肥治疗,但已有研究证实多种SGLT2抑制剂如卡格列净、恩格列净和达格列净均具有减重效果且具有剂量依赖性,可在3~6个月达到峰值并长期维持32-33。还有研究显示,45.6%的T2DM患者在使用SGLT2抑制剂后体重明显减轻,其中年龄70岁以上、体重指数超过25 kg/m2、使用磺酰脲类药物的患者体重减轻更加显著34。此外,SGLT1抑制剂与SGLT2抑制剂联用相比单用SGLT2抑制剂减重幅度明显更大35

目前发现SGLT2抑制剂可通过以下机制来减轻体重:①渗透性利尿作用。短期内SGLT2抑制剂引起的体重下降可能是通过渗透性利尿引起的体液、尿糖流失以及肝糖原过度消耗实现,然而身体水分下降会刺激抗利尿激素分泌从而增加水分的重吸收,使得后续体重维持在一个稳定的水平36。②增加脂肪代谢。研究发现,恩格列净可通过增加能量消耗和脂肪组织褐变来减轻高脂饮食小鼠的体重22。SGLT2抑制剂介导的体重减轻还与神经系统相关。SGLT2抑制剂可通过肝-脑-脂肪轴激活通往脂肪组织的传出交感神经和通往肝脏的中枢迷走神经,导致脂肪分解增加和肝脏葡萄糖产生减少,从而减轻体重37。尿糖的持续丢失进一步引发了机体适应性饥饿代偿反应,表现为胰高血糖素浓度升高、糖异生增强、脂质氧化和酮体生成,抑制了能量储存,促进了能量代谢,机体能量的利用从糖代谢转移到脂肪代谢,增加了脂肪分解,从而加速了体重减轻,这可能与沉默信息调节因子1/过氧化物酶体增殖物激活受体γ共激活因子1α/成纤维细胞生长因子21信号转导通路有关38-40

3. 钠-葡萄糖耦联转运体2抑制剂的降血压作用

高血压也是代谢综合征的主要病理生理特征之一。鉴于SGLT2抑制剂具有抑制肾脏近曲小管对葡萄糖和钠离子的重吸收、调节机体水盐代谢平衡等作用,近年来SGLT2抑制剂也被视为一种新型降压药物。一项针对中国老年高血压合并T2DM患者的研究显示,SGLT2抑制剂可使患者的收缩压和舒张压分别降低8.14和5.27 mmHg(1 mmHg=0.133 kPa)41。卡格列净、达格列净、恩格列净间的降压效果无明显差异,且均呈现出一定的剂量依赖性42。但SGLT2抑制剂降压效果有限,需要与其他常规降压药物联合使用以取得比较满意的降压效果。研究者募集了450例肾功能正常、血糖控制不理想,同时经RAAS抑制剂联合另外一种降压药治疗血压仍较高的患者进行了双盲对照试验,发现10 mg达格列净使用12周后坐位收缩压可降低4.28 mmHg。进一步的亚组分析显示,达格列净与普萘洛尔、钙通道阻滞药有协同作用,但与噻嗪类利尿药无协同作用,这可能是因为SGLT2抑制剂与利尿剂降压机制类似,都是通过利钠和渗透性利尿作用使得细胞外液容量降低,从而降低血压,因此无法起到额外的叠加效果43-44。此外,虽然慢性肾脏病患者的肾小球滤过率降低,但SGLT2抑制剂的降压效果与肾功能相对正常的患者并无明显差别45

SGLT2抑制剂的降压作用尚未完全阐明,除了渗透性利钠、利尿,减少细胞外液容量外,目前认为SGLT2抑制剂的降压机制还包含以下几个方面:①抑制交感神经系统过度激活。交感神经系统在控制高血压的病理生理中发挥着重要作用。有研究发现,SGLT2抑制剂的降压效果不会引起心率的代偿性变化,提示SGLT2抑制剂可以使交感神经系统活性减弱46。此外,多项动物及临床研究表明,SGLT2抑制剂可以抑制体内交感神经系统过度激活,有助于血压的降低和预防心力衰竭47-48。②改善血管功能。有研究指出SGLT2抑制剂可通过直接影响血管细胞功能发挥作用:能增加内皮一氧化氮的生物可利用性,从而恢复内皮依赖性血管舒张;又能抑制血管平滑肌细胞的收缩,并阻止平滑肌细胞的增殖和迁移49-50。此外,动脉硬化会导致血压升高,而SGLT2抑制剂可降低血管僵硬程度进而降低血压51

4. 钠-葡萄糖耦联转运体2抑制剂调节血脂的作用

血脂代谢异常增加了代谢综合征患者心血管疾病的风险,因此需要对异常血脂进行安全、有效的干预52。由于胰岛素抵抗会将机体的能量代谢底物由糖类转变为脂类从而诱导肝脏产生更多的总胆固醇和三酰甘油,而血浆三酰甘油浓度升高可通过胆固醇酯转移蛋白介导HDL-C减少以及LDL-C增加53。既往的荟萃分析结果显示,SGLT2抑制剂会降低血清中的三酰甘油水平,升高总胆固醇、HDL-C和LDL-C水平54-55。然而,关于SGLT2抑制剂对血脂的影响仍存在较大争议。Calapkulu等56报道糖尿病患者经达格列净治疗6个月后,其血清总胆固醇、三酰甘油和LDL-C水平均下降;Cha等57报道糖尿病患者经达格列净治疗24周后,其血清LDL-C水平、HDL-C水平均升高;Chan等58在对中国T2DM患者的研究中发现,SGLT2抑制剂可使患者HDL-C水平下降。此外,不同类型SGLT2抑制剂的降脂作用相差很大,如恩格列净使总胆固醇增加明显,而卡格列净使LDL-C增加明显55

目前,SGLT2抑制剂对血脂影响的机制尚不明了。抑制SGLT2能使脂质氧化水平和胰高血糖素/胰岛素比例升高,促进乙酰辅酶A的生成,而乙酰辅酶A是酮体产生和肝脏胆固醇合成的重要前体59,并且肝脏胆固醇可调节低密度脂蛋白受体的表达,因此SGLT2抑制剂治疗可能会降低低密度脂蛋白受体表达和肝脏对LDL-C的摄取,从而增加血浆中LDL-C水平60。另有研究表明,卡格列净可以减少血管生成素样蛋白4的表达,减轻其对脂蛋白脂解酶的抑制,从而增加三酰甘油的降解61。SGLT2抑制剂调节脂质代谢的机制还需要进一步深入研究。

5. 钠-葡萄糖耦联转运体2抑制剂的降血尿酸作用

高尿酸血症是代谢综合征的病理生理特征之一,常常会引发胰岛素抵抗,进一步促进了代谢综合征的发展62。多项研究显示,SGLT2抑制剂可降低血尿酸水平,但与剂量无显著相关63-66

SGLT2抑制剂降低血尿酸的机制尚未完全阐明,可能的机制有如下几个方面:①促进尿酸的肾脏排泄。SGLT2抑制剂降尿酸的功能主要依赖于肾小管上皮细胞上GLUT9和URAT1这两种主要尿酸盐重吸收蛋白。GLUT9主要在肾脏近曲小管顶膜中高表达,可重吸收肾小管中的尿酸,而URAT1主要在近曲肾小管中表达。SGLT2抑制剂可通过抑制SGLT2对葡萄糖的主动运输,导致葡萄糖排泄增加,使得多余的尿糖在肾脏近曲小管顶膜与尿酸盐竞争结合GLUT9,导致尿酸重吸收减少,引起尿酸排泄增加,从而降低血尿酸67。此外,SGLT2抑制剂还可通过降低血糖减少内源性或治疗性胰岛素,从而间接影响近曲肾小管中URAT1对尿酸盐的重吸收,最终降低了血尿酸水平67。②促进尿酸的肠道排泄。SGLT2抑制剂也参与尿酸的肠道排泄68。ABCG2是一种高容量尿酸盐分泌转运蛋白。一项动物研究结果提示ABCG2的肠尿酸盐转运可补偿肾功能下降时的异常尿酸盐代谢69。Lu等70报道恩格列净通过促进糖尿病小鼠肾脏和回肠中ABCG2的表达,促进尿酸排泄,缓解高尿酸血症。③减少尿酸合成。SGLT2抑制剂可以诱导饥饿状态,减少戊糖磷酸途径的底物反应通量,从而减少嘌呤和尿酸盐合成68

6. 结语

代谢综合征的临床表现多样、发病机制复杂,在进行药物治疗时通常需要联合多种不同药物,但药物之间可能存在相互拮抗,这不仅降低了患者的依从性,增加了药物的副作用,还加重了患者的经济负担。多靶点作用的SGLT2抑制剂为代谢综合征中多种代谢紊乱的治疗提供了一种新的选择,是治疗代谢综合征潜在的有力工具。尽管SGLT2抑制剂在治疗代谢综合征相关的代谢紊乱中已有报道,但其在儿童、妊娠期妇女、老年人等特殊人群中的应用目前尚缺乏大规模随机对照试验研究的证据,有待进一步验证。此外,近年来国内外陆续有多种新的SGLT2抑制剂上市,如伊格列净、鲁格列净、托格列净、埃格列净等,其疗效还有待进一步评估。综上所述,深入研究SGLT2抑制剂的作用机制以及SGLT2抑制剂与其他降糖、降压等药物的联合用药效果,并评估其长期使用的安全性和有效性,提高代谢综合征的治疗效益,最大程度减少不良反应,这将是未来SGLT2抑制剂研究的重要方向。

Acknowledgments

研究得到浙江省自然科学基金(LHDMZ23H050002)支持

Acknowledgments

This work was supported by the Natural Science Foundation of Zhejiang Province (LHDMZ23H050002)

[缩略语]

钠-葡萄糖耦联转运体(sodium-glucose linked transporter,SGLT);2型糖尿病(diabetes mellitus type 2,T2DM);肾素-血管紧张素-醛固酮系统(renin-angiotensin-aldosterone system,RAAS);1型糖尿病(diabetes mellitus type 1,T1DM);高密度脂蛋白胆固醇(high-density lipoprotein cholesterol,HDL-C);低密度脂蛋白胆固醇(low-density lipoprotein cholesterol,LDL-C);葡萄糖转运蛋白(glucose transporter,GLUT);尿酸盐转运蛋白(urate transporter,URAT);ATP结合转运蛋白G家族成员(ATP-binding cassette superfamily G member,ABCG)

利益冲突声明

所有作者均声明不存在利益冲突

Conflict of Interests

The authors declare that there is no conflict of interests

参考文献(References)

  • 1.NOUBIAP J J, NANSSEU J R, LONTCHI-YIMAGOU E, et al. Geographic distribution of metabolic syndrome and its components in the general adult population: a meta-analysis of global data from 28 million individuals[J]. Diabetes Res Clin Pract, 2022, 188: 109924. 10.1016/j.diabres.2022.109924 [DOI] [PubMed] [Google Scholar]
  • 2.YAO F, BO Y, ZHAO L, et al. Prevalence and influ-encing factors of metabolic syndrome among adults in China from 2015 to 2017[J]. Nutrients, 2021, 13(12): 4475. 10.3390/nu13124475 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.VAN BOMMEL E, MUSKIET M, TONNEIJCK L, et al. SGLT2 inhibition in the diabetic kidney-from mecha-nisms to clinical outcome[J]. Clin J Am Soc Nephrol, 2017, 12(4): 700-710. 10.2215/cjn.06080616 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.MARX N, FEDERICI M, SCHÜTT K, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes[J]. Eur Heart J, 2023, 44(39): 4043-4140. [DOI] [PubMed] [Google Scholar]
  • 5.RAHMAN A, KITTIKULSUTH W, FUJISAWA Y, et al. Effects of diuretics on sodium-dependent glucose cotransporter 2 inhibitor-induced changes in blood pressure in obese rats suffering from the metabolic syndrome[J]. J Hypertens, 2016, 34(5): 893-906. 10.1097/hjh.0000000000000871 [DOI] [PubMed] [Google Scholar]
  • 6.DAVIES M J, MERTON K W, VIJAPURKAR U, et al. Canagliflozin improves risk factors of metabolic syndrome in patients with type 2 diabetes mellitus and metabolic syndrome[J]. Diabetes Metab Syndr Obes, 2017, 27(10): 47-55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.CHENG L, FU Q, ZHOU L, et al. Dapagliflozin, met-formin, monotherapy or both in patients with metabolic syndrome[J]. Sci Rep, 2021, 11(1): 24263. 10.1038/s41598-021-03773-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.NESPOUX J, VALLON V. SGLT2 inhibition and kidney protection[J]. Clin Sci (Lond), 2018, 132(12): 1329-1339. 10.1042/cs20171298 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.SEFEROVIĆ P M, PETRIE M C, FILIPPATOS G S, et al. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology[J]. Eur J Heart Fail, 2018, 20(5): 853-872. 10.1002/ejhf.1170 [DOI] [PubMed] [Google Scholar]
  • 10.MOSENZON O, RAZ I, WIVIOTT S D, et al. Dapag-liflozin and prevention of kidney disease among patients with type 2 diabetes: post hoc analyses from the DECLARE-TIMI 58 trial[J]. Diabetes Care, 2022, 45(10): 2350-2359. 10.2337/dc22-0382 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.CHATUR S, VADUGANATHAN M, CLAGGETT B L, et al. Dapagliflozin in patients with heart failure and deterioration in renal function[J]. J Am Coll Cardiol, 2023, 82(19): 1854-1863. 10.1016/j.jacc.2023.08.026 [DOI] [PubMed] [Google Scholar]
  • 12.SHARMA A, OFSTAD A P, AHMAD T, et al. Patient phenotypes and SGLT-2 inhibition in type 2 diabetes: insights from the EMPA-REG OUTCOME trial[J]. JACC Heart Fail, 2021, 9(8): 568-577. 10.1016/j.jchf.2021.03.003 [DOI] [PubMed] [Google Scholar]
  • 13.PACKER M, ANKER S D, BUTLER J, et al. Cardiova-scular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med, 2020, 383(15): 1413-1424. [DOI] [PubMed] [Google Scholar]
  • 14.TOBE S W, MAVRAKANAS T A, BAJAJ H S, et al. Impact of canagliflozin on kidney and cardiovascular outcomes by type 2 diabetes duration: a pooled analysis of the CANVAS program and CREDENCE trials[J]. Diabetes Care, 2024, 47(3): 501-507. 10.2337/dc23-1450 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.SHARMA A, RAZAGHIZAD A, JOURY A, et al. Primary and secondary cardiovascular and kidney pre-vention with canagliflozin: insights from the CANVAS program and CREDENCE trial[J/OL]. J Am Heart Assoc, 2024, 13(3): e031586. 10.1161/jaha.123.031586 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.中华医学会糖尿病学分会 . 中国2型糖尿病防治指南(2020年版) (上)[J]. 中国实用内科杂志, 2021, 41(8): 668-695. [Google Scholar]; Chinese Diabetes Society . Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition) (Part Ⅰ)[J]. Chinese Journal of Prac-tical Internal Medicine, 2021, 41(8): 668-695. (in Chinese) [Google Scholar]
  • 17.中华医学会糖尿病学分会 . 中国2型糖尿病防治指南(2020年版) (下)[J]. 中国实用内科杂志, 2021, 41(9): 757-784. [Google Scholar]; Chinese Diabetes Society . Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition) (Part Ⅱ)[J]. Chinese Journal of Prac-tical Internal Medicine, 2021, 41(9): 757-784. (in Chinese) [Google Scholar]
  • 18.MATSUBAYASHI Y, YOSHIDA A, SUGANAMI H, et al. Association of increased hepatic insulin clearance and change in serum triglycerides or β-hydroxybutyrate concentration via the sodium/glucose-cotransporter 2 inhibitor tofogliflozin[J]. Diabetes Obes Metab, 2020, 22(6): 947-956. 10.1111/dom.13980 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.JOBORI H AL, DANIELE G, ADAMS J, et al. Empag-liflozin treatment is associated with improved β-cell function in type 2 diabetes mellitus[J]. J Clin Endo-crinol Metab, 2018, 103(4): 1402-1407. 10.1210/jc.2017-01838 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.NAKAMURA A. Effects of sodium-glucose co-trans-porter-2 inhibitors on pancreatic β-cell mass and function[J]. Int J Mol Sci, 2022, 23(9): 5104. 10.3390/ijms23095104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.WEI R, CUI X, FENG J, et al. Dapagliflozin promotes beta cell regeneration by inducing pancreatic endocrine cell phenotype conversion in type 2 diabetic mice[J]. Metabolism, 2020, 111: 154324. 10.1016/j.metabol.2020.154324 [DOI] [PubMed] [Google Scholar]
  • 22.XU L, NAGATA N, CHEN G, et al. Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet[J/OL]. BMJ Open Diabetes Res Care, 2019, 7(1): e000783. 10.1136/bmjdrc-2019-000783 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.MCKEEGAN K, MASON S A, TREWIN A J, et al. Reactive oxygen species in exercise and insulin resistance: working towards personalized antioxidant treatment[J]. Redox Biol, 2021, 44: 102005. 10.1016/j.redox.2021.102005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.MIYATA K N, LO C S, ZHAO S, et al. Angiotensin Ⅱ up-regulates sodium-glucose co-transporter 2 expression and SGLT2 inhibitor attenuates Ang Ⅱ-induced hyper-tensive renal injury in mice[J]. Clin Sci (Lond), 2021, 135(7): 943-961. 10.1042/cs20210094 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.LUNA-MARCO C, IANNANTUONI F, HERMO-ARGIBAY A, et al. Cardiovascular benefits of SGLT2 inhibitors and GLP-1 receptor agonists through effects on mitochondrial function and oxidative stress[J]. Free Radic Biol Med, 2024, 213: 19-35. 10.1016/j.freeradbiomed.2024.01.015 [DOI] [PubMed] [Google Scholar]
  • 26.UTHMAN L, LI X, BAARTSCHEER A, et al. Empag-liflozin reduces oxidative stress through inhibition of the novel inflammation/NHE/[Na(+)](c)/ ROS-pathway in human endothelial cells[J]. Biomed Pharmacother, 2022, 146: 112515. 10.1016/j.biopha.2021.112515 [DOI] [PubMed] [Google Scholar]
  • 27.PATEL K, CARBONE A. Sodium-glucose cotransporters as potential therapeutic targets in patients with type 1 diabetes mellitus: an update on phase 3 clinical trial data[J]. Ann Pharmacother, 2019, 53(12): 1227-1237. 10.1177/1060028019859323 [DOI] [PubMed] [Google Scholar]
  • 28.SCHNELL O, VALENSI P, STANDL E, et al. Com-parison of mechanisms and transferability of outcomes of SGLT2 inhibition between type 1 and type 2 diabetes[J/OL]. Endocrinol Diabetes Metab, 2020, 3(3): e00129. 10.1002/edm2.129 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.TAMBORLANE W V, POLIDORI D, ARGENTI D, et al. Pharmacokinetics and pharmacodynamics of canagliflozin in pediatric patients with type 2 diabetes[J]. Pediatr Diabetes, 2018, 19(4): 649-655. 10.1111/pedi.12626 [DOI] [PubMed] [Google Scholar]
  • 30.LAFFEL L, TAMBORLANE W V, YVER A, et al. Pharmacokinetic and pharmacodynamic profile of the sodium-glucose co-transporter-2 inhibitor empagliflozin in young people with Type 2 diabetes: a randomized trial[J]. Diabet Med, 2018, 35(8): 1096-1104. 10.1111/dme.13629 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.VITALE R J, LAFFEL L M. Sodium-glucose trans-porter inhibition in adult and pediatric patients with type 1 diabetes mellitus[J]. Adv Chronic Kidney Dis, 2021, 28(4): 309-317. 10.1053/j.ackd.2021.05.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.LEE P C, GANGULY S, GOH S Y. Weight loss ass-ociated with sodium-glucose cotransporter-2 inhibition: a review of evidence and underlying mechanisms[J]. Obes Rev, 2018, 19(12): 1630-1641. 10.1111/obr.12755 [DOI] [PubMed] [Google Scholar]
  • 33.PRATAMA K G, TANDARTO K, HENGKY A. Weight loss effect of sodium-glucose cotransporter-2 (SGLT2) inhibitors in patients with obesity without diabetes: a systematic review[J]. Acta Endocrinol (Buchar), 2022, 18(2): 216-224. 10.4183/aeb.2022.216 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.DANPANICHKUL P, MANOSROI W, NILSIRISUK T, et al. Predictors of weight reduction effectiveness of SGLT2 inhibitors in diabetes mellitus type 2 patients[J]. Front Endocrinol (Lausanne), 2023, 14: 1251798. 10.3389/fendo.2023.1251798 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.CHEONG A J Y, TEO Y N, TEO Y H, et al. SGLT inhibitors on weight and body mass: a meta-analysis of 116 randomized-controlled trials[J]. Obesity (Silver Spring), 2022, 30(1): 117-128. 10.1002/oby.23331 [DOI] [PubMed] [Google Scholar]
  • 36.BROWN E, WILDING J, BARBER T M, et al. Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: mecha-nistic possibilities[J]. Obes Rev, 2019, 20(6): 816-828. 10.1111/obr.12841 [DOI] [PubMed] [Google Scholar]
  • 37.DONG M, CHEN H, WEN S, et al. The neuronal and non-neuronal pathways of sodium-glucose cotransporter-2 inhibitor on body weight-loss and insulin resistance[J]. Diabetes Metab Syndr Obes, 2023, 16: 425-435. 10.2147/dmso.s399367 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.OSATAPHAN S, MACCHI C, SINGHAL G, et al. SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms[J/OL]. JCI Insight, 2019, 4(5): e123130. 10.1172/jci.insight.123130 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.SWE M T, THONGNAK L, JAIKUMKAO K, et al. Dapagliflozin not only improves hepatic injury and pancreatic endoplasmic reticulum stress, but also induces hepatic gluconeogenic enzymes expression in obese rats[J]. Clin Sci (Lond), 2019, 133(23): 2415-2430. 10.1042/cs20190863 [DOI] [PubMed] [Google Scholar]
  • 40.PACKER M. Role of ketogenic starvation sensors in mediating the renal protective effects of SGLT2 inhibi-tors in type 2 diabetes[J]. J Diabetes Complications, 2020, 34(9): 107647. 10.1016/j.jdiacomp.2020.107647 [DOI] [PubMed] [Google Scholar]
  • 41.CHENG L, FU Q, ZHOU L, et al. Effect of SGLT-2 inhibitor, empagliflozin, on blood pressure reduction in Chinese elderly hypertension patients with type 2 diabetes and its possible mechanisms[J]. Sci Rep, 2022, 12(1): 3525. 10.1038/s41598-022-07395-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.MAZIDI M, REZAIE P, GAO H K, et al. Effect of sodium-glucose cotransport-2 inhibitors on blood pre-ssure in people with type 2 diabetes mellitus: a syste-matic review and meta-analysis of 43 randomized control trials with 22528 patients[J/OL]. J Am Heart Assoc, 2017, 6(6): e004007. 10.1161/jaha.116.004007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.WEBER M A, MANSFIELD T A, CAIN V A, et al. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: a randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Diabetes Endocrinol, 2016, 4(3): 211-220. 10.1016/s2213-8587(15)00417-9 [DOI] [PubMed] [Google Scholar]
  • 44.BRIASOULIS A, DHAYBI O AL, BAKRIS G L. SGLT2 inhibitors and mechanisms of hypertension[J]. Curr Cardiol Rep, 2018, 20(1): 1. 10.1007/s11886-018-0943-5 [DOI] [PubMed] [Google Scholar]
  • 45.CHERNEY D, FERRANNINI E, UMPIERREZ G E, et al. Efficacy and safety of sotagliflozin in patients with type 2 diabetes and stage 3 chronic kidney disease[J]. Diabetes Obes Metab, 2023, 25(6): 1646-1657. 10.1111/dom.15019 [DOI] [PubMed] [Google Scholar]
  • 46.WAN N, RAHMAN A, HITOMI H, et al. The effects of sodium-glucose cotransporter 2 inhibitors on sympa-thetic nervous activity[J]. Front Endocrinol (Lau-sanne), 2018, 9: 421. 10.3389/fendo.2018.00421 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.BALCIOĞLU A S, ÇELIK E, AKSU E, et al. Impact of sodium-glucose cotransporter-2 inhibitors on sympa-thetic nervous system activity detected by sympathetic activity index and LF/HF ratio in patients with type 2 diabetes mellitus[J]. Turk Kardiyol Dern Ars, 2022, 50(6): 415-421. 10.5543/tkda.2022.22403 [DOI] [PubMed] [Google Scholar]
  • 48.SCHEEN A J. Effect of SGLT2 inhibitors on the sympa-thetic nervous system and blood pressure[J]. Curr Cardiol Rep, 2019, 21(8): 70. 10.1007/s11886-019-1165-1 [DOI] [PubMed] [Google Scholar]
  • 49.DURANTE W, BEHNAMMANESH G, PEYTON K J. Effects of sodium-glucose co-transporter 2 inhibitors on vascular cell function and arterial remodeling[J]. Int J Mol Sci, 2021, 22(16): 8786. 10.3390/ijms22168786 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.ZHANG N, FENG B, MA X, et al. Dapagliflozin improves left ventricular remodeling and aorta sympa-thetic tone in a pig model of heart failure with preserved ejection fraction[J]. Cardiovasc Diabetol, 2019, 18(1): 107. 10.1186/s12933-019-0914-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.KOURTIDOU C, RAFAILIDIS V, VAROUKTSI G, et al. Effects of sodium-glucose co-transporter-2 inhibitors on markers of vascular damage[J]. J Pers Med, 2023, 13(3): 536. 10.3390/jpm13030536 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.The Writing Committee of the Report on Cardiovascular Health and Diseases in China, HU S S. Report on cardiovascular health and diseases in China 2021: an updated summary[J]. J Geriatr Cardiol, 2023, 20(6): 399-430. 10.26599/1671-5411.2023.06.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.SUN Q, ZHANG T, MANJI L, et al. Association between serum uric acid and non-alcoholic fatty liver disease: an updated systematic review and meta-analysis[J]. Clin Epidemiol, 2023, 15: 683-693. 10.2147/clep.s403314 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.LI D, WU T, WANG T, et al. Effects of sodium glucose cotransporter 2 inhibitors on risk of dyslipidemia among patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials[J]. Phar-macoepidemiol Drug Saf, 2020, 29(5): 582-590. 10.1002/pds.4985 [DOI] [PubMed] [Google Scholar]
  • 55.SÁNCHEZ-GARCÍA A, SIMENTAL-MENDÍA M, MILLÁN-ALANÍS J M, et al. Effect of sodium-glucose co-transporter 2 inhibitors on lipid profile: a systematic review and meta-analysis of 48 randomized controlled trials[J]. Pharmacol Res, 2020, 160: 105068. 10.1016/j.phrs.2020.105068 [DOI] [PubMed] [Google Scholar]
  • 56.CALAPKULU M, CANDER S, GUL O O, et al. Lipid profile in type 2 diabetic patients with new dapag-liflozin treatment; actual clinical experience data of six months retrospective lipid profile from single center[J]. Diabetes Metab Syndr, 2019, 13(2): 1031-1034. 10.1016/j.dsx.2019.01.016 [DOI] [PubMed] [Google Scholar]
  • 57.CHA S A, PARK Y M, YUN J S, et al. A comparison of effects of DPP-4 inhibitor and SGLT2 inhibitor on lipid profile in patients with type 2 diabetes[J]. Lipids Health Dis, 2017, 16(1): 58. 10.1186/s12944-017-0443-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.CHAN W B. Clinical use of sodium-glucose co-trans-porter-2 inhibitors in Chinese patients with type 2 diabetes mellitus[J]. Singapore Med J, 2019, 60(6): 309-313. 10.11622/smedj.2018139 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.OSTO E, BONACINA F, PIRILLO A, et al. Neutral effect of SGLT2 inhibitors on lipoprotein metabolism: from clinical evidence to molecular mechanisms[J]. Pharmacol Res, 2023, 188: 106667. 10.1016/j.phrs.2023.106667 [DOI] [PubMed] [Google Scholar]
  • 60.BRIAND F, MAYOUX E, BROUSSEAU E, et al. Empagliflozin, via switching metabolism toward lipid utilization, moderately increases LDL cholesterol levels through reduced LDL catabolism[J]. Diabetes, 2016, 65(7): 2032-2038. 10.2337/db16-0049 [DOI] [PubMed] [Google Scholar]
  • 61.BASU D, HUGGINS L A, SCERBO D, et al. Mecha-nism of increased LDL (low-density lipoprotein) and decreased triglycerides with SGLT2 (sodium-glucose cotransporter 2) inhibition[J]. Arterioscler Thromb Vasc Biol, 2018, 38(9): 2207-2216. 10.1161/atvbaha.118.311339 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.ALEMAYEHU E, FISEHA T, BAMBO G M, et al. Pre-valence of hyperuricemia among type 2 diabetes mellitus patients in Africa: a systematic review and meta-analysis[J]. BMC Endocr Disord, 2023, 23(1): 153. 10.1186/s12902-023-01408-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.BAILEY C J. Uric acid and the cardio‐renal effects of SGLT2 inhibitors[J]. Diabetes Obes Metab, 2019, 21(6): 1291-1298. 10.1111/dom.13670 [DOI] [PubMed] [Google Scholar]
  • 64.ZHAO Y, XU L, TIAN D, et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials[J]. Diabetes Obes Metab, 2018, 20(2): 458-462. 10.1111/dom.13101 [DOI] [PubMed] [Google Scholar]
  • 65.SAITO Y, TANAKA A, IMAI T, et al. Factors ass-ociated with the uric acid-lowering effects of sodium-glucose cotransporter-2 inhibition in patients with type 2 diabetes: insights from the randomized PROTECT trial[J]. Diabetes Obes Metab, 2024, 26(3): 1110-1113. 10.1111/dom.15368 [DOI] [PubMed] [Google Scholar]
  • 66.IWATA Y, NOTSU S, KAWAMURA Y, et al. The effect of dapagliflozin on uric acid excretion and serum uric acid level in advanced CKD[J]. Sci Rep, 2023, 13(1): 4849. 10.1038/s41598-023-32072-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.NOVIKOV A, FU Y, HUANG W, et al. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1[J]. Am J Physiol Renal Physiol, 2019, 316(1): F173-F185. 10.1152/ajprenal.00462.2018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.PACKER M. Hyperuricemia and gout reduction by SGLT2 inhibitors in diabetes and heart failure: JACC review topic of the week[J]. J Am Coll Cardiol, 2024, 83(2): 371-381. 10.1016/j.jacc.2023.10.030 [DOI] [PubMed] [Google Scholar]
  • 69.FUJITA K, YAMADA H, IIJIMA M, et al. Electro-chemical analysis of uric acid excretion to the intestinal lumen: effect of serum uric acid-lowering drugs and 5/6 nephrectomy on intestinal uric acid levels[J/OL]. PLoS One, 2019, 14(12): e0226918. 10.1371/journal.pone.0226918 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.LU Y H, CHANG Y P, LI T, et al. Empagliflozin attenuates hyperuricemia by upregulation of ABCG2 via AMPK/AKT/CREB signaling pathway in type 2 diabetic mice[J]. Int J Biol Sci, 2020, 16(3): 529-542. 10.7150/ijbs.33007 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES