Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Sep 1;254(2):385–390. doi: 10.1042/bj2540385

Reconstitution of the L-lactate carrier from rat and rabbit erythrocyte plasma membranes.

R C Poole 1, A P Halestrap 1
PMCID: PMC1135089  PMID: 3178766

Abstract

1. Rat and rabbit erythrocyte plasma-membrane proteins were solubilized with decanoyl-N-methylglucamide and reconstituted into liposomes. The procedure includes detergent removal by gel filtration, followed by a freeze-thaw step. 2. The rate of [1-14C]pyruvate uptake into these vesicles was inhibited by approx. 70% by alpha-cyano-4-hydroxycinnamate and p-chloromercuribenzenesulphonate. The extent of uptake at equilibrium was not affected by the presence of these inhibitors, but was dependent on the osmolarity of the suspending medium. 3. Reconstituted bovine erythrocyte membranes, which have no lactate carrier, showed a much slower time course of pyruvate uptake, with no inhibitor-sensitive component. 4. L- but not D-lactate competed for alpha-cyano-4-hydroxycinnamate-sensitive [1-14C]pyruvate uptake.

Full text

PDF
385

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barac-Nieto M., Murer H., Kinne R. Lactate-sodium cotransport in rat renal brush border membranes. Am J Physiol. 1980 Nov;239(5):F496–F506. doi: 10.1152/ajprenal.1980.239.5.F496. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. DAWSON R. M. ON THE MECHANISM OF ACTION OF PHOSPHOLIPASE A. Biochem J. 1963 Sep;88:414–423. doi: 10.1042/bj0880414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Bruijne A. W., Vreeburg H., Van Steveninck J. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system. Biochim Biophys Acta. 1983 Aug 10;732(3):562–568. doi: 10.1016/0005-2736(83)90232-8. [DOI] [PubMed] [Google Scholar]
  5. Deuticke B., Beyer E., Forst B. Discrimination of three parallel pathways of lactate transport in the human erythrocyte membrane by inhibitors and kinetic properties. Biochim Biophys Acta. 1982 Jan 4;684(1):96–110. doi: 10.1016/0005-2736(82)90053-0. [DOI] [PubMed] [Google Scholar]
  6. Deuticke B. Monocarboxylate transport in erythrocytes. J Membr Biol. 1982;70(2):89–103. doi: 10.1007/BF01870219. [DOI] [PubMed] [Google Scholar]
  7. Deuticke B., Rickert I., Beyer E. Stereoselective, SH-dependent transfer of lactate in mammalian erythrocytes. Biochim Biophys Acta. 1978 Feb 2;507(1):137–155. doi: 10.1016/0005-2736(78)90381-4. [DOI] [PubMed] [Google Scholar]
  8. Donovan J. A., Jennings M. L. Membrane polypeptide in rabbit erythrocytes associated with the inhibition of L-lactate transport by a synthetic anhydride of lactic acid. Biochemistry. 1985 Jan 29;24(3):561–564. doi: 10.1021/bi00324a003. [DOI] [PubMed] [Google Scholar]
  9. Donovan J. A., Jennings M. L. N-hydroxysulfosuccinimido active esters and the L-(+)-lactate transport protein in rabbit erythrocytes. Biochemistry. 1986 Apr 8;25(7):1538–1545. doi: 10.1021/bi00355a012. [DOI] [PubMed] [Google Scholar]
  10. Dubinsky W. P., Racker E. The mechanism of lactate transport in human erythrocytes. J Membr Biol. 1978 Dec 8;44(1):25–36. doi: 10.1007/BF01940571. [DOI] [PubMed] [Google Scholar]
  11. Edlund G. L., Halestrap A. P. The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes. Biochem J. 1988 Jan 1;249(1):117–126. doi: 10.1042/bj2490117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fafournoux P., Demigné C., Rémésy C. Carrier-mediated uptake of lactate in rat hepatocytes. Effects of pH and possible mechanisms for L-lactate transport. J Biol Chem. 1985 Jan 10;260(1):292–299. [PubMed] [Google Scholar]
  13. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  14. Fairclough P., Malathi P., Preiser H., Crane R. K. Reconstitution into liposomes of glucose active transport from the rabbit renal proximal tubule. Characteristics of the system. Biochim Biophys Acta. 1979 May 17;553(2):295–306. doi: 10.1016/0005-2736(79)90233-5. [DOI] [PubMed] [Google Scholar]
  15. Grunze M., Forst B., Deuticke B. Dual effect of membrane cholesterol on simple and mediated transport processes in human erythrocytes. Biochim Biophys Acta. 1980 Aug 14;600(3):860–869. doi: 10.1016/0005-2736(80)90489-7. [DOI] [PubMed] [Google Scholar]
  16. Halestrap A. P., Denton R. M. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochem J. 1974 Feb;138(2):313–316. doi: 10.1042/bj1380313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Halestrap A. P. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Biochem J. 1976 May 15;156(2):193–207. doi: 10.1042/bj1560193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hildmann B., Storelli C., Haase W., Barac-Nieto M., Murer H. Sodium ion/L-lactate co-transport in rabbit small-intestinal brush-border-membrane vesicles. Biochem J. 1980 Jan 15;186(1):169–176. doi: 10.1042/bj1860169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hildreth J. E. N-D-Gluco-N-methylalkanamide compounds, a new class of non-ionic detergents for membrane biochemistry. Biochem J. 1982 Nov 1;207(2):363–366. doi: 10.1042/bj2070363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jennings M. L., Adams-Lackey M. A rabbit erythrocyte membrane protein associated with L-lactate transport. J Biol Chem. 1982 Nov 10;257(21):12866–12871. [PubMed] [Google Scholar]
  21. Jørgensen K. E., Sheikh M. I. Renal transport of monocarboxylic acids. Heterogeneity of lactate-transport systems along the proximal tubule. Biochem J. 1984 Nov 1;223(3):803–807. doi: 10.1042/bj2230803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kasahara M., Hinkle P. C. Reconstitution and purification of the D-glucose transporter from human erythrocytes. J Biol Chem. 1977 Oct 25;252(20):7384–7390. [PubMed] [Google Scholar]
  23. Koepsell H., Korn K., Ferguson D., Menuhr H., Ollig D., Haase W. Reconstitution and partial purification of several Na+ cotransport systems from renal brush-border membranes. Properties of the L-glutamate transporter in proteoliposomes. J Biol Chem. 1984 May 25;259(10):6548–6558. [PubMed] [Google Scholar]
  24. Koepsell H., Menuhr H., Ducis I., Wissmüller T. F. Partial purification and reconstitution of the Na+-D-glucose cotransport protein from pig renal proximal tubules. J Biol Chem. 1983 Feb 10;258(3):1888–1894. [PubMed] [Google Scholar]
  25. Koepsell H. Methodological aspects of purification and reconstitution of transport proteins from mammalian plasma membranes. Rev Physiol Biochem Pharmacol. 1986;104:65–137. doi: 10.1007/BFb0031013. [DOI] [PubMed] [Google Scholar]
  26. Köhne W., Haest C. W., Deuticke B. Mediated transport of anions in band 3-phospholipid vesicles. Biochim Biophys Acta. 1981 Jun 9;644(1):108–120. doi: 10.1016/0005-2736(81)90065-1. [DOI] [PubMed] [Google Scholar]
  27. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Leeks D. R., Halestrap A. P. Chloride-independent transport of pyruvate and lactate across the erythrocyte membrane [proceedings]. Biochem Soc Trans. 1978;6(6):1363–1366. doi: 10.1042/bst0061363. [DOI] [PubMed] [Google Scholar]
  29. Lynch A. M., McGivan J. D. A rapid method for the reconstitution of Na+-dependent neutral amino acid transport from bovine renal brush-border membranes. Biochem J. 1987 Jun 15;244(3):503–508. doi: 10.1042/bj2440503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mengual R., Leblanc G., Sudaka P. The mechanism of Na+-L-lactate cotransport by brush-border membrane vesicles from horse kidney. Analysis by isotopic exchange kinetics of a sequential model and stoichiometry. J Biol Chem. 1983 Dec 25;258(24):15071–15078. [PubMed] [Google Scholar]
  31. Nord E., Wright S. H., Kippen I., Wright E. M. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles. Am J Physiol. 1982 Nov;243(5):F456–F462. doi: 10.1152/ajprenal.1982.243.5.F456. [DOI] [PubMed] [Google Scholar]
  32. Storelli C., Corcelli A., Cassano G., Hildmann B., Murer H., Lippe C. Polar distribution of sodium-dependent and sodium-independent transport system for L-lactate in the plasma membrane of rat enterocytes. Pflugers Arch. 1980 Oct;388(1):11–16. doi: 10.1007/BF00582622. [DOI] [PubMed] [Google Scholar]
  33. Welch S. G., Metcalfe H. K., Monson J. P., Cohen R. D., Henderson R. M., Iles R. A. L(+)-Lactate binding to preparations of rat hepatocyte plasma membranes. J Biol Chem. 1984 Dec 25;259(24):15264–15271. [PubMed] [Google Scholar]
  34. Wolosin J. M. A procedure for membrane-protein reconstitution and the functional reconstitution of the anion transport system of the human-erythrocyte membrane. Biochem J. 1980 Jul 1;189(1):35–44. doi: 10.1042/bj1890035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. de Bruijne A. W., Vreeburg H., van Steveninck J. Alternative-substrate inhibition of L-lactate transport via the monocarboxylate-specific carrier system in human erythrocytes. Biochim Biophys Acta. 1985 Feb 14;812(3):841–844. doi: 10.1016/0005-2736(85)90280-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES