Abstract
The biosynthesis of platelet-activating factor (PAF), a phospholipid autocoid with potent ulcerogenic properties that is produced in secretory exocrine glands by physiological secretagogues, was assessed in microsomal preparations of glandular gastric mucosa. For this purpose, 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF):acetyl-CoA acetyltransferase (EC 2.3.1.67); the enzymes of the 'de novo' pathway: 1-O-alkyl-2-lyso-sn-glycero-3-phosphate (alkyl-lyso-GP):acetyl-CoA acetyltransferase and 1-O-alkyl-2-acetyl-sn-glycerol (alkylacetyl-G):CDP-choline cholinephosphotransferase (EC 2.7.8.16); and some enzymes involved in the catabolism of PAF and lyso-PAF were assayed. Only the enzymes of the 'de novo' pathway and small amounts of PAF acetylhydrolase, phospholipase A2 and a lysophospholipase D acting on either lipids could be detected in the gastric preparations, whereas lyso-PAF:acetyl-CoA acetyltransferase activity was undetectable. The specific activity of alkyl-lyso-GP:acetyl-CoA acetyltransferase in the gastric mucosa was about one-tenth of that found in spleen microsomes and its apparent Km for acetyl-CoA was 454 microM compared with 277 microM in spleen microsomes. Glandular mucosa homogenates contained preformed PAF at a concentration of 2.7 +/- 0.7 ng equivalents of PAF (hexadecyl)/mg of protein. When gastric microsomes were incubated with micromolar concentrations of fatty acids (arachidonic, palmitic and oleic) prior to the assay of dithiothreitol (DTT)-insensitive cholinephosphotransferase, a dose-dependent reduction in the formation of PAF was observed, arachidonic acid being the most potent inhibitor, followed by linoleic acid (only tested on spleen microsomes) and oleic acid. By contrast, 1,2-diolein and phosphatidylcholine (dipalmitoyl) showed no or little effect. These results indicate that glandular gastric mucosa can produce PAF through the 'de novo' pathway, and that fatty acids, especially unsaturated, can reduce that synthesis by modulating the expression of DTT-insensitive cholinephosphotransferase.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahern D. G., Downing D. T. Inhibition of prostaglandin biosynthesis by eicosa-5,8,11,14-tetraynoic acid. Biochim Biophys Acta. 1970 Sep 8;210(3):456–461. doi: 10.1016/0005-2760(70)90042-1. [DOI] [PubMed] [Google Scholar]
- Alonso F., Gil M. G., Sánchez-Crespo M., Mato J. M. Activation of 1-alkyl-2-lysoglycero-3-phosphocholine. Acetyl-CoA transferase during phagocytosis in human polymorphonuclear leukocytes. J Biol Chem. 1982 Apr 10;257(7):3376–3378. [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Ballou L. R., Cheung W. Y. Marked increase of human platelet phospholipase A2 activity in vitro and demonstration of an endogenous inhibitor. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5203–5207. doi: 10.1073/pnas.80.17.5203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Billah M. M., Bryant R. W., Siegel M. I. Lipoxygenase products of arachidonic acid modulate biosynthesis of platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) by human neutrophils via phospholipase A2. J Biol Chem. 1985 Jun 10;260(11):6899–6906. [PubMed] [Google Scholar]
- Bills T. K., Smith J. B., Silver M. J. Selective release of archidonic acid from the phospholipids of human platelets in response to thrombin. J Clin Invest. 1977 Jul;60(1):1–6. doi: 10.1172/JCI108745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blank M. L., Lee T., Fitzgerald V., Snyder F. A specific acetylhydrolase for 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (a hypotensive and platelet-activating lipid). J Biol Chem. 1981 Jan 10;256(1):175–178. [PubMed] [Google Scholar]
- Blank M. L., Snyder F. Improved high-performance liquid chromatographic method for isolation of platelet-activating factor from other phospholipids. J Chromatogr. 1983 Apr 8;273(2):415–420. doi: 10.1016/s0378-4347(00)80963-9. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Caramelo C., Fernández-Gallardo S., Marín-Cao D., Iñarrea P., Santos J. C., López-Novoa J. M., Sanchez Crespo M. Presence of platelet-activating factor in blood from humans and experimental animals. Its absence in anephric individuals. Biochem Biophys Res Commun. 1984 May 16;120(3):789–796. doi: 10.1016/s0006-291x(84)80176-x. [DOI] [PubMed] [Google Scholar]
- DAWSON R. M. A hydrolytic procedure for the identification and estimation of individual phospholipids in biological samples. Biochem J. 1960 Apr;75:45–53. doi: 10.1042/bj0750045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Domenech C., Machado-De Domenech E., Söling H. D. Regulation of acetyl-CoA:1-alkyl-sn-glycero-3-phosphocholine O2-acetyltransferase (lyso-PAF-acetyltransferase) in exocrine glands. Evidence for an activation via phosphorylation by calcium/calmodulin-dependent protein kinase. J Biol Chem. 1987 Apr 25;262(12):5671–5676. [PubMed] [Google Scholar]
- Flower R. J., Vane J. R. Inhibition of prostaglandin biosynthesis. Biochem Pharmacol. 1974 May 15;23(10):1439–1450. doi: 10.1016/0006-2952(74)90381-5. [DOI] [PubMed] [Google Scholar]
- Franson R., Patriarca P., Elsbach P. Phospholipid metabolism by phagocytic cells. Phospholipases A2 associated with rabbit polymorphonuclear leukocyte granules. J Lipid Res. 1974 Jul;15(4):380–388. [PubMed] [Google Scholar]
- Hirohara J., Sugatani J., Okumura T., Sameshima Y., Saito K. Properties and localization of phospholipase A2 activity in rat stomach. Biochim Biophys Acta. 1987 Jun 23;919(3):231–238. doi: 10.1016/0005-2760(87)90262-1. [DOI] [PubMed] [Google Scholar]
- Jackson E. M., Mott G. E., Hoppens C., McManus L. M., Weintraub S. T., Ludwig J. C., Pinckard R. N. High performance liquid chromatography of platelet-activating factors. J Lipid Res. 1984 Jul;25(7):753–757. [PubMed] [Google Scholar]
- Kawasaki T., Snyder F. The metabolism of lyso-platelet-activating factor (1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine) by a calcium-dependent lysophospholipase D in rabbit kidney medulla. Biochim Biophys Acta. 1987 Jul 13;920(1):85–93. doi: 10.1016/0005-2760(87)90314-6. [DOI] [PubMed] [Google Scholar]
- Leach K. L., Blumberg P. M. Modulation of protein kinase C activity and [3H]phorbol 12,13-dibutyrate binding by various tumor promoters in mouse brain cytosol. Cancer Res. 1985 May;45(5):1958–1963. [PubMed] [Google Scholar]
- Lee T. C., Malone B., Snyder F. A new de novo pathway for the formation of 1-alkyl-2-acetyl-sn-glycerols, precursors of platelet activating factor. Biochemical characterization of 1-alkyl-2-lyso-sn-glycero-3-P:acetyl-CoA acetyltransferase in rat spleen. J Biol Chem. 1986 Apr 25;261(12):5373–5377. [PubMed] [Google Scholar]
- Miwa M., Hill C., Kumar R., Sugatani J., Olson M. S., Hanahan D. J. Occurrence of an endogenous inhibitor of platelet-activating factor in rat liver. J Biol Chem. 1987 Jan 15;262(2):527–530. [PubMed] [Google Scholar]
- Murakami K., Chan S. Y., Routtenberg A. Protein kinase C activation by cis-fatty acid in the absence of Ca2+ and phospholipids. J Biol Chem. 1986 Nov 25;261(33):15424–15429. [PubMed] [Google Scholar]
- Nieto M. L., Velasco S., Sanchez Crespo M. Biosynthesis of platelet-activating factor in human polymorphonuclear leukocytes. Involvement of the cholinephosphotransferase pathway in response to the phorbol esters. J Biol Chem. 1988 Feb 15;263(5):2217–2222. [PubMed] [Google Scholar]
- Pace-Asciak C., Wolfe L. S. Inhibition of prostaglandin synthesis by oleic, linoleic and linolenic acids. Biochim Biophys Acta. 1968 Jul 1;152(4):784–787. doi: 10.1016/0005-2760(68)90126-4. [DOI] [PubMed] [Google Scholar]
- Renooij W., Snyder F. Biosynthesis of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor and a hypotensive lipid) by cholinephosphotransferase in various rat tissues. Biochim Biophys Acta. 1981 Feb 23;663(2):545–556. doi: 10.1016/0005-2760(81)90182-x. [DOI] [PubMed] [Google Scholar]
- Rosam A. C., Wallace J. L., Whittle B. J. Potent ulcerogenic actions of platelet-activating factor on the stomach. Nature. 1986 Jan 2;319(6048):54–56. doi: 10.1038/319054a0. [DOI] [PubMed] [Google Scholar]
- Rouser G., Siakotos A. N., Fleischer S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids. 1966 Jan;1(1):85–86. doi: 10.1007/BF02668129. [DOI] [PubMed] [Google Scholar]
- Söling H. D., Eibl H., Fest W. Acetylcholine-like effects of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine ('platelet-activating factor') and its analogues in exocrine secretory glands. Eur J Biochem. 1984 Oct 1;144(1):65–72. doi: 10.1111/j.1432-1033.1984.tb08431.x. [DOI] [PubMed] [Google Scholar]
- Söling H. D., Fest W. Synthesis of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) in exocrine glands and its control by secretagogues. J Biol Chem. 1986 Oct 25;261(30):13916–13922. [PubMed] [Google Scholar]
- Taverna R. D., Hanahan D. J. Modulation of human erythrocyte Ca2+/Mg2+ ATPase activity by phospholipase A2 and proteases. A comparison with calmodulin. Biochem Biophys Res Commun. 1980 May 30;94(2):652–659. doi: 10.1016/0006-291x(80)91282-6. [DOI] [PubMed] [Google Scholar]
- Wallace J. L., Whittle B. J. Prevention of endotoxin-induced gastrointestinal damage by CV-3988, an antagonist of platelet-activating factor. Eur J Pharmacol. 1986 May 13;124(1-2):209–210. doi: 10.1016/0014-2999(86)90148-2. [DOI] [PubMed] [Google Scholar]
- Woodard D. S., Lee T. C., Snyder F. The final step in the de novo biosynthesis of platelet-activating factor. Properties of a unique CDP-choline:1-alkyl-2-acetyl-sn-glycerol choline-phosphotransferase in microsomes from the renal inner medulla of rats. J Biol Chem. 1987 Feb 25;262(6):2520–2527. [PubMed] [Google Scholar]
- Wykle R. L., Malone B., Snyder F. Enzymatic synthesis of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a hypotensive and platelet-aggregating lipid. J Biol Chem. 1980 Nov 10;255(21):10256–10260. [PubMed] [Google Scholar]
- Wykle R. L., Schremmer J. M. A lysophospholipase D pathway in the metabolism of ether-linked lipids in brain microsomes. J Biol Chem. 1974 Mar 25;249(6):1742–1746. [PubMed] [Google Scholar]
