Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Sep 15;254(3):765–771. doi: 10.1042/bj2540765

Resynthesis of sphingomyelin from plasma-membrane phosphatidylcholine in BHK cells treated with Staphylococcus aureus sphingomyelinase.

D Allan 1, P Quinn 1
PMCID: PMC1135149  PMID: 2848498

Abstract

About 60-65% of the total sphingomyelin in intact BHK cells is in a readily accessible pool which is rapidly degraded by Staphylococcus aureus sphingomyelinase. No more sphingomyelin is broken down in cells which have been fixed with glutaraldehyde or lysed with streptolysin O, suggesting that all the sphingomyelin which is available to the enzyme is on the cell surface. The inaccessible pool of sphingomyelin does not equilibrate with the plasma-membrane pool, even after prolonged incubation. Experiments using [3H]-choline show that much more phosphocholine is released from the intact cells treated with sphingomyelinase than can be accounted for by breakdown of the original cell-surface pool of sphingomyelin; the excess appears to be a consequence of the breakdown of sphingomyelin newly resynthesized at the expense of a pool of phosphatidylcholine which represents about 8% of total cell phosphatidylcholine and may reside in the plasma membrane. This would be consistent with resynthesis of cell-surface sphingomyelin by the phosphatidylcholine: ceramide phosphocholinetransferase pathway, which has previously been shown to be localized in the plasma membrane. However, in [3H]palmitate-labelled cells there appeared to be no accumulation of the diacylglycerol expected to be produced by this reaction, and no enhanced synthesis of phosphatidate or phosphatidylinositol; instead there was an increased synthesis of triacylglycerol. A similar increase in labelling of triacylglycerol was seen in enzyme-treated cells where the sphingomyelinase was subsequently removed, allowing resynthesis of sphingomyelin which occurred at a rate of about 25% of total sphingomyelin/h. Treatment of BHK cells with sphingomyelinase caused no change in the rates of fluid-phase endocytosis or exocytosis as measured with [3H]inulin.

Full text

PDF
765

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D., Low M. G., Finean J. B., Michell R. H. Changes in lipid metabolism and cell morphology following attack by phospholipase C (Clostridium perfringens) on red cells or lymphocytes. Biochim Biophys Acta. 1975 Dec 1;413(2):309–316. doi: 10.1016/0005-2736(75)90116-9. [DOI] [PubMed] [Google Scholar]
  2. Allan D., Raval P. J. A sphingomyelinase-resistant pool of sphingomyelin in the nuclear membrane of hen erythrocytes. Biochim Biophys Acta. 1987 Mar 12;897(3):355–363. doi: 10.1016/0005-2736(87)90433-0. [DOI] [PubMed] [Google Scholar]
  3. Allan D., Walklin C. M. Endovesiculation of human erythrocytes exposed to sphingomyelinase C: a possible explanation for the enzyme-resistant pool of sphingomyelin. Biochim Biophys Acta. 1988 Mar 3;938(3):403–410. doi: 10.1016/0005-2736(88)90138-1. [DOI] [PubMed] [Google Scholar]
  4. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  5. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  6. Bernert J. T., Jr, Ullman M. D. Biosynthesis of sphingomyelin from erythro-ceramides and phosphatidylcholine by a microsomal cholinephosphotransferase. Biochim Biophys Acta. 1981 Oct 23;666(1):99–109. doi: 10.1016/0005-2760(81)90095-3. [DOI] [PubMed] [Google Scholar]
  7. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brotherus J., Renkonen O. Subcellular distributions of lipids in cultured BHK cells: evidence for the enrichment of lysobisphosphatidic acid and neutral lipids in lysosomes. J Lipid Res. 1977 Mar;18(2):191–202. [PubMed] [Google Scholar]
  9. Buckingham L., Duncan J. L. Approximate dimensions of membrane lesions produced by streptolysin S and streptolysin O. Biochim Biophys Acta. 1983 Mar 23;729(1):115–122. doi: 10.1016/0005-2736(83)90462-5. [DOI] [PubMed] [Google Scholar]
  10. Diringer H., Marggraf W. D., Koch M. A., Anderer F. A. Evidence for a new biosynthetic pathway of sphingomyelin in SV 40 transformed mouse cells. Biochem Biophys Res Commun. 1972 Jun 28;47(6):1345–1352. doi: 10.1016/0006-291x(72)90220-3. [DOI] [PubMed] [Google Scholar]
  11. Eppler C. M., Malewicz B., Jenkin H. M., Baumann W. J. Phosphatidylcholine as the choline donor in sphingomyelin synthesis. Lipids. 1987 May;22(5):351–357. doi: 10.1007/BF02534005. [DOI] [PubMed] [Google Scholar]
  12. Freeman C. P., West D. Complete separation of lipid classes on a single thin-layer plate. J Lipid Res. 1966 Mar;7(2):324–327. [PubMed] [Google Scholar]
  13. Griffiths G., Warren G., Quinn P., Mathieu-Costello O., Hoppeler H. Density of newly synthesized plasma membrane proteins in intracellular membranes. I. Stereological studies. J Cell Biol. 1984 Jun;98(6):2133–2141. doi: 10.1083/jcb.98.6.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lipsky N. G., Pagano R. E. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J Cell Biol. 1985 Jan;100(1):27–34. doi: 10.1083/jcb.100.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marggraf W. D., Anderer F. A., Kanfer J. N. The formation of sphingomyelin from phosphatidylcholine in plasma membrane preparations from mouse fibroblasts. Biochim Biophys Acta. 1981 Apr 23;664(1):61–73. doi: 10.1016/0005-2760(81)90028-x. [DOI] [PubMed] [Google Scholar]
  16. Marggraf W. D., Diringer H., Koch M. A., Anderer F. A. Kinetics of incorporation of ( 32 P)phosphate into phospholipids of a SV 40 transformed mouse cell during logarithmic growth. Hoppe Seylers Z Physiol Chem. 1972 Nov;353(11):1761–1768. doi: 10.1515/bchm2.1972.353.2.1761. [DOI] [PubMed] [Google Scholar]
  17. Marggraf W. D., Kanfer J. N. The phosphorylcholine acceptor in the phosphatidylcholine:ceramide cholinephosphotransferase reaction. Is the enzyme a transferase or a hydrolase? Biochim Biophys Acta. 1984 May 11;793(3):346–353. doi: 10.1016/0005-2760(84)90248-0. [DOI] [PubMed] [Google Scholar]
  18. Op den Kamp J. A. Lipid asymmetry in membranes. Annu Rev Biochem. 1979;48:47–71. doi: 10.1146/annurev.bi.48.070179.000403. [DOI] [PubMed] [Google Scholar]
  19. SRIBNEY M., KENNEDY E. P. The enzymatic synthesis of sphingomyelin. J Biol Chem. 1958 Dec;233(6):1315–1322. [PubMed] [Google Scholar]
  20. Schwartz R. S., Chiu D. T., Lubin B. Plasma membrane phospholipid organization in human erythrocytes. Curr Top Hematol. 1985;5:63–112. [PubMed] [Google Scholar]
  21. Skipski V. P., Peterson R. F., Barclay M. Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J. 1964 Feb;90(2):374–378. doi: 10.1042/bj0900374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ullman M. D., Radin N. S. The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver. J Biol Chem. 1974 Mar 10;249(5):1506–1512. [PubMed] [Google Scholar]
  23. Voelker D. R., Kennedy E. P. Cellular and enzymic synthesis of sphingomyelin. Biochemistry. 1982 May 25;21(11):2753–2759. doi: 10.1021/bi00540a027. [DOI] [PubMed] [Google Scholar]
  24. Zachowski A., Fellman P., Devaux P. F. Absence of transbilayer diffusion of spin-labeled sphingomyelin on human erythrocytes. Comparison with the diffusion of several spin-labeled glycerophospholipids. Biochim Biophys Acta. 1985 May 28;815(3):510–514. doi: 10.1016/0005-2736(85)90380-3. [DOI] [PubMed] [Google Scholar]
  25. Zwaal R. F., Roelofsen B., Comfurius P., van Deenen L. L. Organization of phospholipids in human red cell membranes as detected by the action of various purified phospholipases. Biochim Biophys Acta. 1975 Sep 16;406(1):83–96. doi: 10.1016/0005-2736(75)90044-9. [DOI] [PubMed] [Google Scholar]
  26. van Meer G., Simons K., Op den Kamp J. A., van Deenen L. M. Phospholipid asymmetry in Semliki Forest virus grown on baby hamster kidney (BHK-21) cells. Biochemistry. 1981 Mar 31;20(7):1974–1981. doi: 10.1021/bi00510a037. [DOI] [PubMed] [Google Scholar]
  27. van den Hill A., van Heusden G. P., Wirtz K. W. The synthesis of sphingomyelin in the Morris hepatomas 7777 and 5123D is restricted to the plasma membrane. Biochim Biophys Acta. 1985 Feb 8;833(2):354–357. doi: 10.1016/0005-2760(85)90210-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES