Abstract
An extracellular beta-amylase from Clostridium thermosulphurogenes was purified 811-fold to homogeneity, and its general molecular, physico-chemical and catalytic properties were determined. The native enzyme was a tetramer of 210 kDa composed of a single type subunit; its 20 amino acid N-terminus displayed 45% homology with Bacillus polymyxa beta-amylase. The beta-amylase was enriched in both acidic and hydrophobic amino acids. The pure enzyme displayed an isoelectric point of 5.1 and a pH activity optimum of 5.5. The optimum temperature for beta-amylase activity was 75 degrees C, and enzyme thermostability at 80 degrees C was enhanced by substrate and Ca2+ addition. The beta-amylase hydrolysed amylose to maltose and amylopectin and glycogen to maltose and limit dextrins, and it was inhibited by alpha- and beta-cyclodextrins. The enzyme displayed kcat. and Km values for boiled soluble starch of 400,000 min-1 per mol and 1.68 mg/ml, respectively. The enzyme was antigenically distinct from plant beta-amylases.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ENGLARD S., SINGER T. P. Physicochemical studies on beta-amylase. J Biol Chem. 1950 Nov;187(1):213–219. [PubMed] [Google Scholar]
- Hyun H. H., Zeikus J. G. General Biochemical Characterization of Thermostable Extracellular beta-Amylase from Clostridium thermosulfurogenes. Appl Environ Microbiol. 1985 May;49(5):1162–1167. doi: 10.1128/aem.49.5.1162-1167.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyun H. H., Zeikus J. G. Regulation and genetic enhancement of beta-amylase production in Clostridium thermosulfurogenes. J Bacteriol. 1985 Dec;164(3):1162–1170. doi: 10.1128/jb.164.3.1162-1170.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawazu T., Nakanishi Y., Uozumi N., Sasaki T., Yamagata H., Tsukagoshi N., Udaka S. Cloning and nucleotide sequence of the gene coding for enzymatically active fragments of the Bacillus polymyxa beta-amylase. J Bacteriol. 1987 Apr;169(4):1564–1570. doi: 10.1128/jb.169.4.1564-1570.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- OUCHTERLONY O. Antigen-antibody reactions in gels. IV. Types of reactions in coordinated systems of diffusion. Acta Pathol Microbiol Scand. 1953;32(2):230–240. [PubMed] [Google Scholar]
- Obi S. K., Odibo F. J. Partial Purification and Characterization of a Thermostable Actinomycete beta-Amylase. Appl Environ Microbiol. 1984 Mar;47(3):571–575. doi: 10.1128/aem.47.3.571-575.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBYT J., FRENCH D. PURIFICATION AND ACTION PATTERN OF AN AMYLASE FROM BACILLUS POLYMYXA. Arch Biochem Biophys. 1964 Feb;104:338–345. doi: 10.1016/s0003-9861(64)80024-2. [DOI] [PubMed] [Google Scholar]
- Saha B. C., Mathupala S. P., Zeikus J. G. Purification and characterization of a highly thermostable novel pullulanase from Clostridium thermohydrosulfuricum. Biochem J. 1988 Jun 1;252(2):343–348. doi: 10.1042/bj2520343. [DOI] [PMC free article] [PubMed] [Google Scholar]