Abstract
The pattern of glycogen deposition in skeletal muscles of varying fibre composition was examined in rats during the starved-to-fed transition. In all the muscles studied, glycogen concentrations steadily increased during the first 8 h after chow re-feeding, and the fed value was exceeded. Rates of glycogen deposition varied, not with muscle fibre composition, but with the extent of glycogen depletion during starvation. There was no evidence for skeletal-muscle glycogen breakdown during the period of hepatic glycogenesis, making it unlikely that recycling of carbon from muscle glycogen to lactate is quantitatively important for the provision of glycogenic precursors to the liver, but moderate glycogen loss was observed from 8 to 24 h after re-feeding, when the liver is in the lipogenic mode. The factors influencing glucose disposal by skeletal muscle after re-feeding are discussed.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abumrad N. N., Cherrington A. D., Williams P. E., Lacy W. W., Rabin D. Absorption and disposition of a glucose load in the conscious dog. Am J Physiol. 1982 Jun;242(6):E398–E406. doi: 10.1152/ajpendo.1982.242.6.E398. [DOI] [PubMed] [Google Scholar]
- Bartels H., Vogt B., Jungermann K. Glycogen synthesis from pyruvate in the periportal and from glucose in the perivenous zone in perfused livers from fasted rats. FEBS Lett. 1987 Sep 14;221(2):277–283. doi: 10.1016/0014-5793(87)80940-7. [DOI] [PubMed] [Google Scholar]
- Bjorkman O., Crump M., Phillips R. W. Intestinal metabolism of orally administered glucose and fructose in Yucatan miniature swine. J Nutr. 1984 Aug;114(8):1413–1420. doi: 10.1093/jn/114.8.1413. [DOI] [PubMed] [Google Scholar]
- Brady L. J., Goodman M. N., Kalish F. N., Ruderman N. B. Insulin binding and sensitivity in rat skeletal muscle: effect of starvation. Am J Physiol. 1981 Feb;240(2):E184–E190. doi: 10.1152/ajpendo.1981.240.2.E184. [DOI] [PubMed] [Google Scholar]
- Conlee R. K., Hickson R. C., Winder W. W., Hagberg J. M., Holloszy J. O. Regulation of glycogen resynthesis in muscles of rats following exercise. Am J Physiol. 1978 Sep;235(3):R145–R150. doi: 10.1152/ajpregu.1978.235.3.R145. [DOI] [PubMed] [Google Scholar]
- Cox D. J., Palmer T. N. Carcass glycogen repletion on carbohydrate re-feeding after starvation. Biochem J. 1987 Aug 1;245(3):903–905. doi: 10.1042/bj2450903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fell R. D., Terblanche S. E., Ivy J. L., Young J. C., Holloszy J. O. Effect of muscle glycogen content on glucose uptake following exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Feb;52(2):434–437. doi: 10.1152/jappl.1982.52.2.434. [DOI] [PubMed] [Google Scholar]
- French T. J., Holness M. J., MacLennan P. A., Sugden M. C. Effects of nutritional status and acute variation in substrate supply on cardiac and skeletal-muscle fructose 2,6-bisphosphate concentrations. Biochem J. 1988 Mar 15;250(3):773–779. doi: 10.1042/bj2500773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman M. N., Lowell B., Ruderman N. B. Protein conservation during starvation: possible role of lipid fuels. Prog Clin Biol Res. 1982;102(Pt 100):317–331. [PubMed] [Google Scholar]
- Hellerstein M. K., Greenblatt D. J., Munro H. N. Glycoconjugates as noninvasive probes of intrahepatic metabolism: pathways of glucose entry into compartmentalized hepatic UDP-glucose pools during glycogen accumulation. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7044–7048. doi: 10.1073/pnas.83.18.7044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holness M. J., French T. J., Sugden M. C. Hepatic glycogen synthesis on carbohydrate re-feeding after starvation. A regulatory role for pyruvate dehydrogenase in liver and extrahepatic tissues. Biochem J. 1986 Apr 15;235(2):441–445. doi: 10.1042/bj2350441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holness M. J., MacLennan P. A., Palmer T. N., Sugden M. C. The disposition of carbohydrate between glycogenesis, lipogenesis and oxidation in liver during the starved-to-fed transition. Biochem J. 1988 Jun 1;252(2):325–330. doi: 10.1042/bj2520325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holness M. J., Sugden M. C. Hepatic carbon flux after re-feeding. Hyperthyroidism blocks glycogen synthesis and the suppression of glucose output observed in response to carbohydrate re-feeding. Biochem J. 1987 Nov 1;247(3):627–634. doi: 10.1042/bj2470627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang M. T., Veech R. L. Role of the direct and indirect pathways for glycogen synthesis in rat liver in the postprandial state. J Clin Invest. 1988 Mar;81(3):872–878. doi: 10.1172/JCI113397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hue L., Rider M. H. Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues. Biochem J. 1987 Jul 15;245(2):313–324. doi: 10.1042/bj2450313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Issad T., Pénicaud L., Ferré P., Kandé J., Baudon M. A., Girard J. Effects of fasting on tissue glucose utilization in conscious resting rats. Major glucose-sparing effect in working muscles. Biochem J. 1987 Aug 15;246(1):241–244. doi: 10.1042/bj2460241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landau B. R., Wahren J. Quantification of the pathways followed in hepatic glycogen formation from glucose. FASEB J. 1988 May;2(8):2368–2375. doi: 10.1096/fasebj.2.8.3282961. [DOI] [PubMed] [Google Scholar]
- Le Marchand-Brustel Y., Freychet P. Effect of fasting and streptozotocin diabetes on insulin binding and action in the isolated mouse soleus muscle. J Clin Invest. 1979 Nov;64(5):1505–1515. doi: 10.1172/JCI109609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGarry J. D., Kuwajima M., Newgard C. B., Foster D. W., Katz J. From dietary glucose to liver glycogen: the full circle round. Annu Rev Nutr. 1987;7:51–73. doi: 10.1146/annurev.nu.07.070187.000411. [DOI] [PubMed] [Google Scholar]
- Newgard C. B., Foster D. W., McGarry J. D. Evidence for suppression of hepatic glucose-6-phosphatase with carbohydrate feeding. Diabetes. 1984 Feb;33(2):192–195. doi: 10.2337/diab.33.2.192. [DOI] [PubMed] [Google Scholar]
- Preedy V. R., Garlick P. J. Protein synthesis in skeletal muscle of the perfused rat hemicorpus compared with rates in the intact animal. Biochem J. 1983 Aug 15;214(2):433–442. doi: 10.1042/bj2140433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pénicaud L., Ferré P., Kande J., Leturque A., Issad T., Girard J. Effect of anesthesia on glucose production and utilization in rats. Am J Physiol. 1987 Mar;252(3 Pt 1):E365–E369. doi: 10.1152/ajpendo.1987.252.3.E365. [DOI] [PubMed] [Google Scholar]
- Rennie M. J., Winder W. W., Holloszy J. O. A sparing effect of increased plasma fatty acids on muscle and liver glycogen content in the exercising rat. Biochem J. 1976 Jun 15;156(3):647–655. doi: 10.1042/bj1560647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shikama H., Ui M. Glucose load diverts hepatic gluconeogenic product from glucose to glycogen in vivo. Am J Physiol. 1978 Oct;235(4):E354–E360. doi: 10.1152/ajpendo.1978.235.4.E354. [DOI] [PubMed] [Google Scholar]
- Stirewalt W. S., Low R. B., Slaiby J. M. Insulin sensitivity and responsiveness of epitrochlearis and soleus muscles from fed and starved rats. Recognition of differential changes in insulin sensitivities of protein synthesis and glucose incorporation into glycogen. Biochem J. 1985 Apr 15;227(2):355–362. doi: 10.1042/bj2270355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terjung R. L., Baldwin K. M., Winder W. W., Holloszy J. O. Glycogen repletion in different types of muscle and in liver after exhausting exercise. Am J Physiol. 1974 Jun;226(6):1387–1391. doi: 10.1152/ajplegacy.1974.226.6.1387. [DOI] [PubMed] [Google Scholar]
- Zorzano A., Balon T. W., Brady L. J., Rivera P., Garetto L. P., Young J. C., Goodman M. N., Ruderman N. B. Effects of starvation and exercise on concentrations of citrate, hexose phosphates and glycogen in skeletal muscle and heart. Evidence for selective operation of the glucose-fatty acid cycle. Biochem J. 1985 Dec 1;232(2):585–591. doi: 10.1042/bj2320585. [DOI] [PMC free article] [PubMed] [Google Scholar]
