Abstract
In vitamin B-12 (cobalamin) deficiency the metabolism of propionyl-CoA and methylmalonyl-CoA are inhibited secondarily to decreased L-methylmalonyl-CoA mutase activity. Production of acylcarnitines provides a mechanism for removing acyl groups and liberating CoA under conditions of impaired acyl-CoA utilization. Carnitine metabolism was studied in the vitamin B-12-deficient rat to define the relationship between alterations in acylcarnitine generation and the development of methylmalonic aciduria. Urinary excretion of methylmalonic acid was increased 200-fold in vitamin B-12-deficient rats as compared with controls. Urinary acylcarnitine excretion was increased in the vitamin B-12-deficient animals by 70%. This increase in urinary acylcarnitine excretion correlated with the degree of metabolic impairment as measured by the urinary methylmalonic acid elimination. Urinary propionylcarnitine excretion averaged 11 nmol/day in control rats and 120 nmol/day in the vitamin B-12-deficient group. The fraction of total carnitine present as short-chain acylcarnitines in the plasma and liver of vitamin B-12-deficient rats was increased as compared with controls. When the rats were fasted for 48 h, relative or absolute increases were seen in the urine, plasma, liver and skeletal-muscle acylcarnitine content of the vitamin B-12-deficient rats as compared with controls. Thus vitamin B-12 deficiency was associated with a redistribution of carnitine towards acylcarnitines. Propionylcarnitine was a significant constituent of the acylcarnitine pool in the vitamin B-12-deficient animals. The changes in carnitine metabolism were consistent with the changes in CoA metabolism known to occur with vitamin B-12 deficiency. The vitamin B-12-deficient rat provides a model system for studying carnitine metabolism in the methylmalonic acidurias.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adibi S. A. Metabolism of branched-chain amino acids in altered nutrition. Metabolism. 1976 Nov;25(11):1287–1302. doi: 10.1016/s0026-0495(76)80012-1. [DOI] [PubMed] [Google Scholar]
- Brass E. P., Beyerinck R. A. Interactions of propionate and carnitine metabolism in isolated rat hepatocytes. Metabolism. 1987 Aug;36(8):781–787. doi: 10.1016/0026-0495(87)90117-x. [DOI] [PubMed] [Google Scholar]
- Brass E. P. Effect of alpha-ketobutyrate on palmitic acid and pyruvate metabolism in isolated rat hepatocytes. Biochim Biophys Acta. 1986 Aug 29;888(1):18–24. doi: 10.1016/0167-4889(86)90065-0. [DOI] [PubMed] [Google Scholar]
- Brass E. P., Fennessey P. V., Miller L. V. Inhibition of oxidative metabolism by propionic acid and its reversal by carnitine in isolated rat hepatocytes. Biochem J. 1986 May 15;236(1):131–136. doi: 10.1042/bj2360131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brass E. P., Hoppel C. L. Carnitine metabolism in the fasting rat. J Biol Chem. 1978 Apr 25;253(8):2688–2693. [PubMed] [Google Scholar]
- Brass E. P., Hoppel C. L. Relationship between acid-soluble carnitine and coenzyme A pools in vivo. Biochem J. 1980 Sep 15;190(3):495–504. doi: 10.1042/bj1900495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bremer J. Carnitine--metabolism and functions. Physiol Rev. 1983 Oct;63(4):1420–1480. doi: 10.1152/physrev.1983.63.4.1420. [DOI] [PubMed] [Google Scholar]
- Burton W. C., Frenkel E. P. Effect of vitamin B-12 deficiency on the hepatic tissue concentration of acyl carnitines. Biochim Biophys Acta. 1975 Aug 25;398(2):217–223. doi: 10.1016/0005-2760(75)90137-x. [DOI] [PubMed] [Google Scholar]
- Cederblad G., Lindstedt S. A method for the determination of carnitine in the picomole range. Clin Chim Acta. 1972 Mar;37:235–243. doi: 10.1016/0009-8981(72)90438-x. [DOI] [PubMed] [Google Scholar]
- Cox R. A., Hoppel C. L. Biosynthesis of carnitine and 4-N-trimethylaminobutyrate from 6-N-trimethyl-lysine. Biochem J. 1973 Dec;136(4):1083–1090. doi: 10.1042/bj1361083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Di Donato S., Rimoldi M., Garavaglia B., Uziel G. Propionylcarnitine excretion in propionic and methylmalonic acidurias: a cause of carnitine deficiency. Clin Chim Acta. 1984 May 16;139(1):13–21. doi: 10.1016/0009-8981(84)90187-6. [DOI] [PubMed] [Google Scholar]
- Frenkel E. P., Kitchens R. L., Hersh L. B., Frenkel R. Effect of vitamin B12 deprivation on the in vivo levels of coenzyme A intermediates associated with propionate metabolism. J Biol Chem. 1974 Nov 10;249(21):6984–6991. [PubMed] [Google Scholar]
- Gregersen N. The specific inhibition of the pyruvate dehydrogenase complex from pig kidney by propionyl-CoA and isovaleryl-Co-A. Biochem Med. 1981 Aug;26(1):20–27. doi: 10.1016/0006-2944(81)90026-0. [DOI] [PubMed] [Google Scholar]
- Horne D. W., Broquist H. P. Role of lysine and -N-trimethyllysine in carnitine biosynthesis. I. Studies in Neurospora crassa. J Biol Chem. 1973 Mar 25;248(6):2170–2175. [PubMed] [Google Scholar]
- Kondrup J., Grunnet N. The effect of acute and prolonged ethanol treatment on the contents of coenzyme A, carnitine and their derivatives in rat liver. Biochem J. 1973 Mar;132(3):373–379. doi: 10.1042/bj1320373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kovachy R. J., Copley S. D., Allen R. H. Recognition, isolation, and characterization of rat liver D-methylmalonyl coenzyme A hydrolase. J Biol Chem. 1983 Sep 25;258(18):11415–11421. [PubMed] [Google Scholar]
- Lapointe D. S., Olson M. S. alpha-Ketobutyrate metabolism in perfused rat liver: regulation of alpha-ketobutyrate decarboxylation and effects of alpha-ketobutyrate on pyruvate dehydrogenase. Arch Biochem Biophys. 1985 Nov 1;242(2):417–429. doi: 10.1016/0003-9861(85)90226-7. [DOI] [PubMed] [Google Scholar]
- MARQUIS N. R., FRITZ I. B. ENZYMOLOGICAL DETERMINATION OF FREE CARNITINE CONCENTRATIONS IN RAT TISSUES. J Lipid Res. 1964 Apr;5:184–187. [PubMed] [Google Scholar]
- MAZUMDER R., SASAKAWA T., OCHOA S. Metabolism of propionic acid in animal tissues. X. Methylmalonyl co-enzyme A mutase holoenzyme. J Biol Chem. 1963 Jan;238:50–53. [PubMed] [Google Scholar]
- Marcell P. D., Stabler S. P., Podell E. R., Allen R. H. Quantitation of methylmalonic acid and other dicarboxylic acids in normal serum and urine using capillary gas chromatography-mass spectrometry. Anal Biochem. 1985 Oct;150(1):58–66. doi: 10.1016/0003-2697(85)90440-3. [DOI] [PubMed] [Google Scholar]
- Martin-Requero A., Corkey B. E., Cerdan S., Walajtys-Rode E., Parrilla R. L., Williamson J. R. Interactions between alpha-ketoisovalerate metabolism and the pathways of gluconeogenesis and urea synthesis in isolated hepatocytes. J Biol Chem. 1983 Mar 25;258(6):3673–3681. [PubMed] [Google Scholar]
- McGarry J. D., Robles-Valdes C., Foster D. W. Role of carnitine in hepatic ketogenesis. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4385–4388. doi: 10.1073/pnas.72.11.4385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millington D. S., Roe C. R., Maltby D. A. Application of high resolution fast atom bombardment and constant B/E ratio linked scanning to the identification and analysis of acylcarnitines in metabolic disease. Biomed Mass Spectrom. 1984 May;11(5):236–241. doi: 10.1002/bms.1200110508. [DOI] [PubMed] [Google Scholar]
- Olsen C. An enzymatic fluorimetric micromethod for the determination of acetoacetate, -hydroxybutyrate, pyruvate and lactate. Clin Chim Acta. 1971 Jul;33(2):293–300. doi: 10.1016/0009-8981(71)90486-4. [DOI] [PubMed] [Google Scholar]
- Patel T. B., DeBuysere M. S., Olson M. S. The effect of propionate on the regulation of the pyruvate dehydrogenase complex in the rat liver. Arch Biochem Biophys. 1983 Feb 1;220(2):405–414. doi: 10.1016/0003-9861(83)90430-7. [DOI] [PubMed] [Google Scholar]
- Pearson D. J., Tubbs P. K. Carnitine and derivatives in rat tissues. Biochem J. 1967 Dec;105(3):953–963. doi: 10.1042/bj1050953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roe C. R., Hoppel C. L., Stacey T. E., Chalmers R. A., Tracey B. M., Millington D. S. Metabolic response to carnitine in methylmalonic aciduria. An effective strategy for elimination of propionyl groups. Arch Dis Child. 1983 Nov;58(11):916–920. doi: 10.1136/adc.58.11.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roe C. R., Millington D. S., Maltby D. A., Kahler S. G., Bohan T. P. L-carnitine therapy in isovaleric acidemia. J Clin Invest. 1984 Dec;74(6):2290–2295. doi: 10.1172/JCI111657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seccombe D. W., Hahn P., Novak The effect of diet and development on blood levels of free and esterified carnitine in the rat. Biochim Biophys Acta. 1978 Mar 30;528(3):483–489. doi: 10.1016/0005-2760(78)90038-3. [DOI] [PubMed] [Google Scholar]
- Solberg H. E., Bremer J. Formation of branched chain acylcarnitines in mitochondria. Biochim Biophys Acta. 1970 Nov 24;222(2):372–380. doi: 10.1016/0304-4165(70)90126-1. [DOI] [PubMed] [Google Scholar]
- Stabler S. P., Marcell P. D., Podell E. R., Allen R. H., Lindenbaum J. Assay of methylmalonic acid in the serum of patients with cobalamin deficiency using capillary gas chromatography-mass spectrometry. J Clin Invest. 1986 May;77(5):1606–1612. doi: 10.1172/JCI112476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stumpf D. A., McAfee J., Parks J. K., Eguren L. Propionate inhibition of succinate:CoA ligase (GDP) and the citric acid cycle in mitochondria. Pediatr Res. 1980 Oct;14(10):1127–1131. doi: 10.1203/00006450-198010000-00008. [DOI] [PubMed] [Google Scholar]
- Walajtys-Rode E., Williamson J. R. Effects of branched chain alpha-ketoacids on the metabolism of isolated rat liver cells. III. Interactions with pyruvate dehydrogenase. J Biol Chem. 1980 Jan 25;255(2):413–418. [PubMed] [Google Scholar]
- Wałajtys-Rode E., Coll K. E., Williamson J. R. Effects of branched chain alpha-ketoacids on the metabolism of isolated rat liver cells. II. Interactions with gluconeogenesis and urea synthesis. J Biol Chem. 1979 Nov 25;254(22):11521–11529. [PubMed] [Google Scholar]
- Williams D. L., Spray G. H., Newman G. E., O'Brien J. R. Dietary depletion of vitamin B12 and the excretion of methylmalonic acid in the rat. Br J Nutr. 1969 Jun;23(2):343–352. doi: 10.1079/bjn19690041. [DOI] [PubMed] [Google Scholar]