Abstract
Use of Triton X-114 allowed us to develop a new method to separate hydrophilic oligosaccharidic material from hydrophobic oligosaccharide pyrophosphodolichols (oligosaccharide-PP-Dol). Taking advantage of this procedure we characterize, in yeast microsomal membranes, an enzymic activity that hydrolyses oligosaccharide-PP-Dol into oligosaccharidic material. H.p.l.c. analysis together with alkaline-phosphatase- and endo-N-acetyl-beta-D-glucosaminidase-susceptibility demonstrate that the oligosaccharidic released material is mainly composed of oligomannosides containing a chitobiose phosphate at the reducing end. The enzymic activity requires bivalent cations and is inhibited by pyrophosphate, NAD+ and bacitracin. As other, commercially available, pyrophosphatases have no action on lipid intermediates, the described pyrophosphatase activity appears to be the specific enzyme for oligosaccharide-PP-Dol. This enzymic splitting of the pyrophosphate bond might be the primary event in the catabolism of lipid intermediates.
Full text
PDF![235](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a5/1135215/bc585ce66860/biochemj00222-0227.png)
![236](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a5/1135215/1cb28c8dad2c/biochemj00222-0228.png)
![237](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a5/1135215/30f9f98c387f/biochemj00222-0229.png)
![238](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a5/1135215/a647076c2d74/biochemj00222-0230.png)
![239](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a5/1135215/0be4e6cbdddd/biochemj00222-0231.png)
![240](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a5/1135215/77c92dac4864/biochemj00222-0232.png)
![241](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a5/1135215/7dd2a477258b/biochemj00222-0233.png)
![242](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a5/1135215/571ccbe698f2/biochemj00222-0234.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anumula K. R., Spiro R. G. Release of glucose-containing polymannose oligosaccharides during glycoprotein biosynthesis. Studies with thyroid microsomal enzymes and slices. J Biol Chem. 1983 Dec 25;258(24):15274–15282. [PubMed] [Google Scholar]
- Bischoff J., Kornfeld R. Evidence for an alpha-mannosidase in endoplasmic reticulum of rat liver. J Biol Chem. 1983 Jul 10;258(13):7907–7910. [PubMed] [Google Scholar]
- Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
- Cacan R., Cecchelli R., Verbert A. Catabolic pathway of oligosaccharide-diphospho-dolichol. Study of the fate of the oligosaccharidic moiety in mouse splenocytes. Eur J Biochem. 1987 Jul 15;166(2):469–474. doi: 10.1111/j.1432-1033.1987.tb13539.x. [DOI] [PubMed] [Google Scholar]
- Cacan R., Hoflack B., Verbert A. Fate of oligosaccharide-lipid intermediates synthesized by resting rat-spleen lymphocytes. Eur J Biochem. 1980 May;106(2):473–479. doi: 10.1111/j.1432-1033.1980.tb04594.x. [DOI] [PubMed] [Google Scholar]
- Chalifour R. J., Spiro R. G. Cleavage of dolichyl pyrophosphoryl oligosaccharides by endo-beta-N-acetylglucosaminidase H: comparison of enzymatic and acid hydrolysis techniques for saccharide release. Arch Biochem Biophys. 1984 Feb 15;229(1):386–394. doi: 10.1016/0003-9861(84)90166-8. [DOI] [PubMed] [Google Scholar]
- Hanover J. A., Lennarz W. J. Transmembrane assembly of N-linked glycoproteins. Studies on the topology of saccharide synthesis. J Biol Chem. 1982 Mar 25;257(6):2787–2794. [PubMed] [Google Scholar]
- Hanover J. A., Lennarz W. J. Transmembrane assembly of membrane and secretory glycoproteins. Arch Biochem Biophys. 1981 Oct 1;211(1):1–19. doi: 10.1016/0003-9861(81)90423-9. [DOI] [PubMed] [Google Scholar]
- Hsu A. F., Baynes J. W., Heath E. C. The role of a dolichol-oligosaccharide as an intermediate in glycoprotein biosynthesis. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2391–2395. doi: 10.1073/pnas.71.6.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jelinek-Kelly S., Akiyama T., Saunier B., Tkacz J. S., Herscovics A. Characterization of a specific alpha-mannosidase involved in oligosaccharide processing in Saccharomyces cerevisiae. J Biol Chem. 1985 Feb 25;260(4):2253–2257. [PubMed] [Google Scholar]
- Oliver G. J., Hemming F. W. The transfer of mannose to dolichol diphosphate oligosaccharides in pig liver endoplasmic reticulum. Biochem J. 1975 Nov;152(2):191–199. doi: 10.1042/bj1520191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pryde J. G., Phillips J. H. Fractionation of membrane proteins by temperature-induced phase separation in Triton X-114. Application to subcellular fractions of the adrenal medulla. Biochem J. 1986 Jan 15;233(2):525–533. doi: 10.1042/bj2330525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varki A., Kornfeld S. Structural studies of phosphorylated high mannose-type oligosaccharides. J Biol Chem. 1980 Nov 25;255(22):10847–10858. [PubMed] [Google Scholar]
- Wedgwood J. F., Strominger J. L. Enzymatic activities in cultured human lymphocytes that dephosphorylate dolichyl pyrophosphate and dolichyl phosphate. J Biol Chem. 1980 Feb 10;255(3):1120–1123. [PubMed] [Google Scholar]