Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Oct 15;255(2):391–396. doi: 10.1042/bj2550391

Enzymic capacities of amyloplasts from wheat (Triticum aestivum) endosperm.

G Entwistle 1, T A Rees 1
PMCID: PMC1135240  PMID: 2849412

Abstract

Lysates of protoplasts from the endosperm of developing grains of wheat (Triticum aestivum) were fractionated on density gradients of Nycodenz to give amyloplasts. Enzyme distribution on the gradients suggested that: (i) starch synthase and ADP-glucose pyrophosphorylase are confined to the amyloplasts; (ii) pyrophosphate: fructose-6-phosphate 1-phosphotransferase and UDP-glucose pyrophosphorylase are confined to the cytosol; (iii) a significant proportion (23-45%) of each glycolytic enzyme, from phosphoglucomutase to pyruvate kinase inclusive, is in the amyloplast. Starch synthase, ADP-glucose pyrophosphorylase and each of the glycolytic enzymes showed appreciable latency when assayed in unfractionated lysates of protoplasts. No activity of fructose-1,6-bisphosphatase was found in amyloplasts or in homogenates of endosperm. Antibody to plastidic fructose-1,6-bisphosphatase did not react positively, in an immunoblot analysis, with any protein in extracts of wheat endosperm. It is argued that wheat endosperm lacks significant plastidic fructose-1,6-bisphosphatase and that carbon for starch synthesis does not enter the amyloplast as a C-3 compound but probably as hexose phosphate.

Full text

PDF
391

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ap Rees T., Thomas S. M., Fuller W. A., Chapman B. Location of gluconeogenesis from phosphoenolpyruvate in cotyledons of Cucurbita pepo. Biochim Biophys Acta. 1975 Mar 14;385(1):145–156. doi: 10.1016/0304-4165(75)90082-3. [DOI] [PubMed] [Google Scholar]
  2. Cadet F., Meunier J. C., Ferté N. Effects of pH and fructose 2,6-bisphosphate on oxidized and reduced spinach chloroplastic fructose-1,6-bisphosphatase. Eur J Biochem. 1987 Jan 15;162(2):393–398. doi: 10.1111/j.1432-1033.1987.tb10614.x. [DOI] [PubMed] [Google Scholar]
  3. Gottschalk M. E., Chatterjee T., Edelstein I., Marcus F. Studies on the mechanism of interaction of fructose 2,6-bisphosphate with fructose-1,6-bisphosphatase. J Biol Chem. 1982 Jul 25;257(14):8016–8020. [PubMed] [Google Scholar]
  4. Herzog B., Stitt M., Heldt H. W. Control of Photosynthetic Sucrose Synthesis by Fructose 2,6-Bisphosphate : III. Properties of the Cytosolic Fructose 1,6-Bisphosphatase. Plant Physiol. 1984 Jul;75(3):561–565. doi: 10.1104/pp.75.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Journet E. P., Douce R. Enzymic capacities of purified cauliflower bud plastids for lipid synthesis and carbohydrate metabolism. Plant Physiol. 1985 Oct;79(2):458–467. doi: 10.1104/pp.79.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kombrink E., Kruger N. J., Beevers H. Kinetic properties of pyrophosphate:fructose-6-phosphate phosphotransferase from germinating castor bean endosperm. Plant Physiol. 1984 Feb;74(2):395–401. doi: 10.1104/pp.74.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kruger N. J., Hammond J. B. Molecular Comparison of Pyrophosphate- and ATP-Dependent Fructose 6-Phosphate 1-Phosphotransferases from Potato Tuber. Plant Physiol. 1988 Mar;86(3):645–648. doi: 10.1104/pp.86.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Nishizawa A. N., Buchanan B. B. Enzyme regulation in C4 photosynthesis. Purification and properties of thioredoxin-linked fructose bisphosphatase and sedoheptulose bisphosphatase from corn leaves. J Biol Chem. 1981 Jun 25;256(12):6119–6126. [PubMed] [Google Scholar]
  10. Renart J., Reiser J., Stark G. R. Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3116–3120. doi: 10.1073/pnas.76.7.3116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Scopes R. K. 3-phosphoglycerate kinase of skeletal muscle. Methods Enzymol. 1975;42:127–134. doi: 10.1016/0076-6879(75)42105-x. [DOI] [PubMed] [Google Scholar]
  12. Scott K. J., Craigie J. S., Smillie R. M. Pathways of Respiration in Plant Tumors. Plant Physiol. 1964 May;39(3):323–327. doi: 10.1104/pp.39.3.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vaessen R. T., Kreike J., Groot G. S. Protein transfer to nitrocellulose filters. A simple method for quantitation of single proteins in complex mixtures. FEBS Lett. 1981 Feb 23;124(2):193–196. doi: 10.1016/0014-5793(81)80134-2. [DOI] [PubMed] [Google Scholar]
  14. Van Schaftingen E., Lederer B., Bartrons R., Hers H. G. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem. 1982 Dec;129(1):191–195. doi: 10.1111/j.1432-1033.1982.tb07039.x. [DOI] [PubMed] [Google Scholar]
  15. ap Rees T., Green J. H., Wilson P. M. Pyrophosphate:fructose 6-phosphate 1-phosphotransferase and glycolysis in non-photosynthetic tissues of higher plants. Biochem J. 1985 Apr 1;227(1):299–304. doi: 10.1042/bj2270299. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES