Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Oct 15;255(2):471–476. doi: 10.1042/bj2550471

The microsomal glucose-6-phosphatase enzyme of pancreatic islets.

I D Waddell 1, A Burchell 1
PMCID: PMC1135252  PMID: 2849415

Abstract

Microsomal fractions isolated from pancreatic islet cells were shown to contain high specific glucose-6-phosphatase activity. The islet-cell glucose-6-phosphatase enzyme has the same Mr (36,500), similar immunological properties and kinetic characteristics to the hepatic microsomal glucose-6-phosphatase enzyme.

Full text

PDF
471

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arion W. J., Burchell B., Burchell A. Specific inactivation of the phosphohydrolase component of the hepatic microsomal glucose-6-phosphatase system by diethyl pyrocarbonate. Biochem J. 1984 Jun 15;220(3):835–842. doi: 10.1042/bj2200835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arion W. J., Lange A. J., Walls H. E., Ballas L. M. Evidence for the participation of independent translocation for phosphate and glucose 6-phosphate in the microsomal glucose-6-phosphatase system. Interactions of the system with orthophosphate, inorganic pyrophosphate, and carbamyl phosphate. J Biol Chem. 1980 Nov 10;255(21):10396–10406. [PubMed] [Google Scholar]
  3. Ashcroft S. J., Bunce J., Lowry M., Hansen S. E., Hedeskov C. J. The effect of sugars on (pro)insulin biosynthesis. Biochem J. 1978 Aug 15;174(2):517–526. doi: 10.1042/bj1740517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ashcroft S. J., Hedeskov C. J., Randle P. J. Glucose metabolism in mouse pancreatic islets. Biochem J. 1970 Jun;118(1):143–154. doi: 10.1042/bj1180143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ashcroft S. J., Randle P. J. Glucose-6-phosphatase activity of mouse pancreatic islets. Nature. 1968 Aug 24;219(5156):857–858. doi: 10.1038/219857a0. [DOI] [PubMed] [Google Scholar]
  6. Benedetti A., Fulceri R., Comporti M. Calcium sequestration activity in rat liver microsomes. Evidence for a cooperation of calcium transport with glucose-6-phosphatase. Biochim Biophys Acta. 1985 Jun 27;816(2):267–277. doi: 10.1016/0005-2736(85)90494-8. [DOI] [PubMed] [Google Scholar]
  7. Benedetti A., Fulceri R., Romani A., Comporti M. MgATP-dependent glucose 6-phosphate-stimulated Ca2+ accumulation in liver microsomal fractions. Effects of inositol 1,4,5-trisphosphate and GTP. J Biol Chem. 1988 Mar 5;263(7):3466–3473. [PubMed] [Google Scholar]
  8. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  9. Blair J. N., Burchell A. The mechanism of histone activation of the hepatic microsomal glucose-6-phosphatase system: a novel method to assay glucose-6-phosphatase activity. Biochim Biophys Acta. 1988 Feb 17;964(2):161–167. doi: 10.1016/0304-4165(88)90162-6. [DOI] [PubMed] [Google Scholar]
  10. Burchell A., Burchell B. Stabilization of partially-purified glucose 6-phosphatase by fluoride. Is enzyme inactivation caused by dephosphorylation? FEBS Lett. 1980 Sep 8;118(2):180–184. doi: 10.1016/0014-5793(80)80214-6. [DOI] [PubMed] [Google Scholar]
  11. Burchell A., Cain D. I. Rat hepatic microsomal glucose-6-phosphatase protein levels are increased in streptozotocin-induced diabetes. Diabetologia. 1985 Nov;28(11):852–856. doi: 10.1007/BF00291077. [DOI] [PubMed] [Google Scholar]
  12. Burchell A., Hume R., Burchell B. A new microtechnique for the analysis of the human hepatic microsomal glucose-6-phosphatase system. Clin Chim Acta. 1988 Apr 15;173(2):183–191. doi: 10.1016/0009-8981(88)90256-2. [DOI] [PubMed] [Google Scholar]
  13. Burchell A., Jung R. T., Lang C. C., Bennet W., Shepherd A. N. Diagnosis of type 1a and type 1c glycogen storage diseases in adults. Lancet. 1987 May 9;1(8541):1059–1062. doi: 10.1016/s0140-6736(87)90484-3. [DOI] [PubMed] [Google Scholar]
  14. Colca J. R., Kotagal N., Lacy P. E., McDaniel M. L. Comparison of the properties of active Ca2+ transport by the islet-cell endoplasmic reticulum and plasma membrane. Biochim Biophys Acta. 1983 Apr 6;729(2):176–184. doi: 10.1016/0005-2736(83)90483-2. [DOI] [PubMed] [Google Scholar]
  15. Colca J. R., Kotagal N., Lacy P. E., McDaniel M. L. Modulation of active Ca2+ uptake by the islet-cell endoplasmic reticulum. Biochem J. 1983 Apr 15;212(1):113–121. doi: 10.1042/bj2120113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Colilla W., Johnson W. T., Nordlie R. C. The nature of modifications by various anions of synthetic and hydrolytic activities of multifunctional glucose-6-phosphatase. Biochim Biophys Acta. 1974 Sep 11;364(1):78–87. doi: 10.1016/0005-2744(74)90134-x. [DOI] [PubMed] [Google Scholar]
  17. Colilla W., Jorgenson R. A., Nordlie R. C. Mammalian carbamyl phosphate : glucose phosphotransferase and glucose-6-phosphate phosphohydrolase: extended tissue distribution. Biochim Biophys Acta. 1975 Jan 23;377(1):117–125. doi: 10.1016/0005-2744(75)90292-2. [DOI] [PubMed] [Google Scholar]
  18. Coore H. G., Randle P. J. Regulation of insulin secretion studied with pieces of rabbit pancreas incubated in vitro. Biochem J. 1964 Oct;93(1):66–78. doi: 10.1042/bj0930066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Countaway J. L., Waddell I. D., Burchell A., Arion W. J. The phosphohydrolase component of the hepatic microsomal glucose-6-phosphatase system is a 36.5-kilodalton polypeptide. J Biol Chem. 1988 Feb 25;263(6):2673–2678. [PubMed] [Google Scholar]
  20. Domin B. A., Serabjit-Singh C. J., Philpot R. M. Quantitation of rabbit cytochrome P-450, form 2, in microsomal preparations bound directly to nitrocellulose paper using a modified peroxidase-immunostaining procedure. Anal Biochem. 1984 Feb;136(2):390–396. doi: 10.1016/0003-2697(84)90234-3. [DOI] [PubMed] [Google Scholar]
  21. GRODSKY G. M., BATTS A. A., BENNETT L. L., VCELLA C., MCWILLIAMS N. B., SMITH D. F. EFFECTS OF CARBOHYDRATES ON SECRETION OF INSULIN FROM ISOLATED RAT PANCREAS. Am J Physiol. 1963 Oct;205:638–644. doi: 10.1152/ajplegacy.1963.205.4.638. [DOI] [PubMed] [Google Scholar]
  22. Giroix M. H., Sener A., Malaisse W. J. Hexose metabolism in pancreatic islets. Absence of glucose-6-phosphatase in rat islet cells. Mol Cell Endocrinol. 1987 Feb;49(2-3):219–225. doi: 10.1016/0303-7207(87)90216-4. [DOI] [PubMed] [Google Scholar]
  23. HELLMAN B. The effect of ageing on the total volumes of the A and B cells in the islets of Langerhans of the rat. Acta Endocrinol (Copenh) 1959 Sep;32:92–112. doi: 10.1530/acta.0.xxxii0092. [DOI] [PubMed] [Google Scholar]
  24. HERS H. G., BERTHET J., BERTHET L., DE DUVE C. Le système hexose-phosphatasique. III. Localisation intra-cellulaire des ferments par centrifugation fractionnée. Bull Soc Chim Biol (Paris) 1951;33(1-2):21–41. [PubMed] [Google Scholar]
  25. Hedeskov C. J., Capito K. The effect of starvation on insulin secretion and glucose metabolism in mouse pancreatic islets. Biochem J. 1974 Jun;140(3):423–433. doi: 10.1042/bj1400423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hedeskov C. J. Mechanism of glucose-induced insulin secretion. Physiol Rev. 1980 Apr;60(2):442–509. doi: 10.1152/physrev.1980.60.2.442. [DOI] [PubMed] [Google Scholar]
  27. Hellman B. Beta-cell cytoplasmic Ca2+ balance as a determinant for glucose-stimulated insulin release. Diabetologia. 1985 Aug;28(8):494–501. doi: 10.1007/BF00281983. [DOI] [PubMed] [Google Scholar]
  28. LAZARUS S. S. Acid and glucose-6-phosphatase activity of pancreatic B cells after cortisone and sulfonylureas. Proc Soc Exp Biol Med. 1959 Nov;102:303–306. doi: 10.3181/00379727-102-25227. [DOI] [PubMed] [Google Scholar]
  29. LAZARUS S. S., BARDEN H. SPECIFICITY AND ULTRASTRUCTURAL LOCALIZATION OF PANCREATIC B CELL GLUCOSE-6-PHOSPHATASE. Diabetes. 1965 Mar;14:146–156. doi: 10.2337/diab.14.3.146. [DOI] [PubMed] [Google Scholar]
  30. LAZARUS S. S. Demonstration of glucose-6-phosphatase in mammalian pancreas. Proc Soc Exp Biol Med. 1959 Aug-Sep;101:819–822. doi: 10.3181/00379727-101-25108. [DOI] [PubMed] [Google Scholar]
  31. Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967 Jan;16(1):35–39. doi: 10.2337/diab.16.1.35. [DOI] [PubMed] [Google Scholar]
  32. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  33. Lange A. J., Arion W. J., Burchell A., Burchell B. Aluminum ions are required for stabilization and inhibition of hepatic microsomal glucose-6-phosphatase by sodium fluoride. J Biol Chem. 1986 Jan 5;261(1):101–107. [PubMed] [Google Scholar]
  34. Malaisse W. J., Malaisse-Lagae F., Sener A. Coupling factors in nutrient-induced insulin release. Experientia. 1984 Oct 15;40(10):1035–1043. doi: 10.1007/BF01971449. [DOI] [PubMed] [Google Scholar]
  35. Mandrell R. E., Zollinger W. D. Use of a zwitterionic detergent for the restoration of the antibody-binding capacity of electroblotted meningococcal outer membrane proteins. J Immunol Methods. 1984 Feb 24;67(1):1–11. doi: 10.1016/0022-1759(84)90080-2. [DOI] [PubMed] [Google Scholar]
  36. Matschinsky F. M., Ellerman J. E. Metabolism of glucose in the islets of Langerhans. J Biol Chem. 1968 May 25;243(10):2730–2736. [PubMed] [Google Scholar]
  37. McDaniel M. L., Colca J. R., Kotagal N., Lacy P. E. A subcellular fractionation approach for studying insulin release mechanisms and calcium metabolism in islets of Langerhans. Methods Enzymol. 1983;98:182–200. doi: 10.1016/0076-6879(83)98149-1. [DOI] [PubMed] [Google Scholar]
  38. Montague W., Morgan N. G., Rumford G. M., Prince C. A. Effect of glucose on polyphosphoinositide metabolism in isolated rat islets of Langerhans. Biochem J. 1985 Apr 15;227(2):483–489. doi: 10.1042/bj2270483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Morgan N. G., Rumford G. M., Montague W. Mechanisms involved in intracellular calcium mobilization in isolated rat islets of Langerhans. Biochem J. 1987 Jun 15;244(3):669–674. doi: 10.1042/bj2440669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nilsson T., Arkhammar P., Hallberg A., Hellman B., Berggren P. O. Characterization of the inositol 1,4,5-trisphosphate-induced Ca2+ release in pancreatic beta-cells. Biochem J. 1987 Dec 1;248(2):329–336. doi: 10.1042/bj2480329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nordlie R. C. Metabolic regulation by multifunctional glucose-6-phosphatase. Curr Top Cell Regul. 1974;8(0):33–117. doi: 10.1016/b978-0-12-152808-9.50009-2. [DOI] [PubMed] [Google Scholar]
  42. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  43. Rorsman P., Abrahamsson H., Gylfe E., Hellman B. Dual effects of glucose on the cytosolic Ca2+ activity of mouse pancreatic beta-cells. FEBS Lett. 1984 May 7;170(1):196–200. doi: 10.1016/0014-5793(84)81398-8. [DOI] [PubMed] [Google Scholar]
  44. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. TäljedalIB Presence, induction and possible role of glucose 6-phosphatase in mammalian pancreatic islets. Biochem J. 1969 Sep;114(2):387–394. doi: 10.1042/bj1140387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Waddell I. D., Lindsay J. G., Burchell A. The identification of T2; the phosphate/pyrophosphate transport protein of the hepatic microsomal glucose-6-phosphatase system. FEBS Lett. 1988 Feb 29;229(1):179–182. doi: 10.1016/0014-5793(88)80822-6. [DOI] [PubMed] [Google Scholar]
  47. Welsh M., Scherberg N., Gilmore R., Steiner D. F. Translational control of insulin biosynthesis. Evidence for regulation of elongation, initiation and signal-recognition-particle-mediated translational arrest by glucose. Biochem J. 1986 Apr 15;235(2):459–467. doi: 10.1042/bj2350459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wolf B. A., Colca J. R., Comens P. G., Turk J., McDaniel M. L. Glucose 6-phosphate regulates Ca2+ steady state in endoplasmic reticulum of islets. A possible link in glucose-induced insulin secretion. J Biol Chem. 1986 Dec 15;261(35):16284–16287. [PubMed] [Google Scholar]
  49. Wolf B. A., Turk J., Sherman W. R., McDaniel M. L. Intracellular Ca2+ mobilization by arachidonic acid. Comparison with myo-inositol 1,4,5-trisphosphate in isolated pancreatic islets. J Biol Chem. 1986 Mar 15;261(8):3501–3511. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES