Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Oct 15;255(2):685–692.

The magnesium-protoporphyrin IX (oxidative) cyclase system. Studies on the mechanism and specificity of the reaction sequence.

C J Walker 1, K E Mansfield 1, I N Rezzano 1, C M Hanamoto 1, K M Smith 1, P A Castelfranco 1
PMCID: PMC1135280  PMID: 3202840

Abstract

Mg-protoporphyrin IX monomethyl ester cyclase activity was assayed in isolated developing cucumber (Cucumis sativus L. var. Beit Alpha) chloroplasts [Chereskin, Wong & Castelfranco (1982) Plant Physiol. 70, 987-993]. The presence of both 6- and 7-methyl esterase activities was detected, which permitted the use of diester porphyrins in a substrate-specificity study. It was found that: (1) the 6-methyl acrylate derivative of Mg-protoporphyrin monomethyl ester was inactive as a substrate for cyclization; (2) only one of the two enantiomers of 6-beta-hydroxy-Mg-protoporphyrin dimethyl ester had detectable activity as a substrate for the cyclase; (3) the 2-vinyl-4-ethyl-6-beta-oxopropionate derivatives of Mg-protoporphyrin mono- or di-methyl ester were approx. 4 times more active as substrates for cyclization than the corresponding divinyl forms; (4) at the level of Mg-protoporphyrin there was no difference in cyclase activity between the 4-vinyl and 4-ethyl substrates; (5) reduction of the side chain of Mg-protoporphyrin in the 2-position from a vinyl to an ethyl resulted in a partial loss of cyclase activity. This work suggests that the original scheme for cyclization proposed by Granick [(1950) Harvey Lect. 44, 220-245] should now be modified by the omission of the 6-methyl acrylate derivative of Mg-protoporphyrin monomethyl ester and the introduction of stereo-specificity at the level of the hydroxylated intermediate.

Full text

PDF
685

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOETTIGER E. G., FURSHPAN E. The recording of flight movements in insects. Science. 1952 Jul 18;116(3003):60–61. doi: 10.1126/science.116.3003.60. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Carey E. E., Rebeiz C. A. Chloroplast Biogenesis 49 : Differences among Angiosperms in the Biosynthesis and Accumulation of Monovinyl and Divinyl Protochlorophyllide during Photoperiodic Greening. Plant Physiol. 1985 Sep;79(1):1–6. doi: 10.1104/pp.79.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carey E. E., Tripathy B. C., Rebeiz C. A. Chloroplast biogenesis 51 : modulation of monovinyl and divinyl protochlorophyllide biosynthesis by light and darkness in vitro. Plant Physiol. 1985 Dec;79(4):1059–1063. doi: 10.1104/pp.79.4.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castelfranco P. A., Weinstein J. D., Schwarcz S., Pardo A. D., Wezelman B. E. The Mg insertion step in chlorophyll biosynthesis. Arch Biochem Biophys. 1979 Feb;192(2):592–598. doi: 10.1016/0003-9861(79)90130-9. [DOI] [PubMed] [Google Scholar]
  6. Chereskin B. M., Wong Y. S., Castelfranco P. A. In Vitro Synthesis of the Chlorophyll Isocyclic Ring : Transformation of Magnesium-Protoporphyrin IX and Magnesium-Protoporphyrin IX Monomethyl Ester into Magnesium-2,4-Divinyl Pheoporphyrin A(5). Plant Physiol. 1982 Oct;70(4):987–993. doi: 10.1104/pp.70.4.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cox M. T., Howarth T. T., Jackson A. H., Kenner G. W. Pyrroles and related compounds. 28. Beta-keto-esters in the porphyrin series. J Chem Soc Perkin 1. 1974;4:512–516. doi: 10.1039/p19740000512. [DOI] [PubMed] [Google Scholar]
  8. Fuesler T. P., Hanamoto C. M., Castelfranco P. A. Separation of Mg-Protoporphyrin IX and Mg-Protoporphyrin IX Monomethyl Ester Synthesized de novo by Developing Cucumber Etioplasts. Plant Physiol. 1982 Feb;69(2):421–423. doi: 10.1104/pp.69.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GRANICK S. The structural and functional relationships between heme and chlorophyll. Harvey Lect. 1948 1949;Series 44:220–245. [PubMed] [Google Scholar]
  10. HOLDEN M. The breakdown of chlorophyll by chlorophyllase. Biochem J. 1961 Feb;78:359–364. doi: 10.1042/bj0780359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hardy S. I., Castelfranco P. A., Rebeiz C. A. Effect of the hypocotyl hook on greening in etiolated cucumber cotyledons. Plant Physiol. 1970 Nov;46(5):705–707. doi: 10.1104/pp.46.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KLEIN A. O., VISHNIAC W. Activity and partial purification of chlorophyllase in aqueous systems. J Biol Chem. 1961 Sep;236:2544–2547. [PubMed] [Google Scholar]
  13. Kenner G. W., McCombie S. W., Smith K. M. Pyrroles and related compounds. 30. Cyclisation of porphyrin beta-keto-esters to phaeoporphyrins. J Chem Soc Perkin 1. 1974;4:527–530. doi: 10.1039/p19740000527. [DOI] [PubMed] [Google Scholar]
  14. Kenner G. W., McCombie S. W., Smith K. M. Pyrroles and related compounds. XXIV. Separation and oxidative degradation of chlorophyll derivatives. J Chem Soc Perkin 1. 1973;21:2517–2523. doi: 10.1039/p19730002517. [DOI] [PubMed] [Google Scholar]
  15. Miller M. J., Rapoport H. Porphyrin-protein bond of cytochrome c558 from Euglena gracilis. J Am Chem Soc. 1977 May 11;99(10):3479–3485. doi: 10.1021/ja00452a048. [DOI] [PubMed] [Google Scholar]
  16. Nasrulhaq-Boyce A., Griffiths W. T., Jones O. T. The use of continuous assays to characterize the oxidative cyclase that synthesizes the chlorophyll isocyclic ring. Biochem J. 1987 Apr 1;243(1):23–29. doi: 10.1042/bj2430023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tripathy B. C., Rebeiz C. A. Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants. J Biol Chem. 1986 Oct 15;261(29):13556–13564. [PubMed] [Google Scholar]
  18. Wong Y. S., Castelfranco P. A., Goff D. A., Smith K. M. Intermediates in the formation of the chlorophyll isocyclic ring. Plant Physiol. 1985 Nov;79(3):725–729. doi: 10.1104/pp.79.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wong Y. S., Castelfranco P. A. Properties of the Mg-Protoporphyrin IX Monomethyl Ester (Oxidative) Cyclase System. Plant Physiol. 1985 Nov;79(3):730–733. doi: 10.1104/pp.79.3.730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wong Y. S., Castelfranco P. A. Resolution and Reconstitution of Mg-Protoporphyrin IX Monomethyl Ester (Oxidative) Cyclase, the Enzyme System Responsible for the Formation of the Chlorophyll Isocyclic Ring. Plant Physiol. 1984 Jul;75(3):658–661. doi: 10.1104/pp.75.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES