Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Oct 15;255(2):721–724.

Substrate specificity of rat liver glutathione S-transferase isoenzymes for a series of glutathione analogues, modified at the gamma-glutamyl moiety.

A E Adang 1, J Brussee 1, D J Meyer 1, B Coles 1, B Ketterer 1, A van der Gen 1, G J Mulder 1
PMCID: PMC1135285  PMID: 2904809

Abstract

The substrate specificity of purified rat liver glutathione S-transferases (GSTs) for a series of gamma-glutamyl-modified GSH analogues was investigated. GST isoenzyme 3-3 catalysed the conjugation of 1-chloro-2,4-dinitrobenzene with six out of the nine analogues. alpha-L-Glu-L-Cys-Gly and alpha-D-Glu-L-Cys-Gly showed catalytic efficiencies of 40% and 130% that of GSH respectively. The GSH analogue with an alpha-D-glutamyl moiety appeared to be a highly isoenzyme-3-3-specific co-substrate: kcat./Km with GST isoenzyme 4-4 was only about 5% that with GST isoenzyme 3-3, and no enzymic activity was detectable with GST isoenzymes 1-1 and 2-2. GST isoenzyme 4-4 showed some resemblance to GST 3-3: five out of nine co-substrate analogues were accepted by this second isoenzyme of the Mu multigene family. Isoenzymes 1-1 and 2-2, of the Alpha multigene family, accepted only two alternative co-substrates, which indicates that their GSH-binding site is much more specific.

Full text

PDF
721

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott W. A., Griffith O. W., Meister A. Gamma-glutamyl-glutathione. Natural occurrence and enzymology. J Biol Chem. 1986 Oct 15;261(29):13657–13661. [PubMed] [Google Scholar]
  2. Adang A. E., Duindam A. J., Brussee J., Mulder G. J., van der Gen A. Synthesis and nucleophilic reactivity of a series of glutathione analogues, modified at the gamma-glutamyl moiety. Biochem J. 1988 Oct 15;255(2):715–720. [PMC free article] [PubMed] [Google Scholar]
  3. Beale D., Meyer D. J., Taylor J. B., Ketterer B. Evidence that the Yb subunits of hepatic glutathione transferases represent two different but related families of polypeptides. Eur J Biochem. 1983 Dec 1;137(1-2):125–129. doi: 10.1111/j.1432-1033.1983.tb07805.x. [DOI] [PubMed] [Google Scholar]
  4. Chen W. J., Boehlert C. C., Rider K., Armstrong R. N. Synthesis and characterization of the oxygen and desthio analogues of glutathione as dead-end inhibitors of glutathione S-transferase. Biochem Biophys Res Commun. 1985 Apr 16;128(1):233–240. doi: 10.1016/0006-291x(85)91669-9. [DOI] [PubMed] [Google Scholar]
  5. Cornish-Bowden A., Eisenthal R. Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot andother methods. Biochem J. 1974 Jun;139(3):721–730. doi: 10.1042/bj1390721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Epp O., Ladenstein R., Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem. 1983 Jun 1;133(1):51–69. doi: 10.1111/j.1432-1033.1983.tb07429.x. [DOI] [PubMed] [Google Scholar]
  7. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  8. Kamisaka K., Habig W. H., Ketley J. N., Arias M., Jakoby W. B. Multiple forms of human glutathione S-transferase and their affinity for bilirubin. Eur J Biochem. 1975 Dec 1;60(1):153–161. doi: 10.1111/j.1432-1033.1975.tb20987.x. [DOI] [PubMed] [Google Scholar]
  9. Karplus P. A., Schulz G. E. Refined structure of glutathione reductase at 1.54 A resolution. J Mol Biol. 1987 Jun 5;195(3):701–729. doi: 10.1016/0022-2836(87)90191-4. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Mannervik B. The isoenzymes of glutathione transferase. Adv Enzymol Relat Areas Mol Biol. 1985;57:357–417. doi: 10.1002/9780470123034.ch5. [DOI] [PubMed] [Google Scholar]
  12. Principato G. B., Danielson U. H., Mannervik B. Relaxed thiol substrate specificity of glutathione transferase effected by a non-substrate glutathione derivative. FEBS Lett. 1988 Apr 11;231(1):155–158. doi: 10.1016/0014-5793(88)80722-1. [DOI] [PubMed] [Google Scholar]
  13. Satoh K., Kitahara A., Sato K. Identification of heterogeneous and microheterogeneous subunits of glutathione S-transferase in rat liver cytosol. Arch Biochem Biophys. 1985 Oct;242(1):104–111. doi: 10.1016/0003-9861(85)90484-9. [DOI] [PubMed] [Google Scholar]
  14. Sesay M. A., Ammon H. L., Armstrong R. N. Crystallization and a preliminary X-ray diffraction study of isozyme 3-3 of glutathione S-transferase from rat liver. J Mol Biol. 1987 Sep 20;197(2):377–378. doi: 10.1016/0022-2836(87)90133-1. [DOI] [PubMed] [Google Scholar]
  15. Sugimoto M., Kuhlenkamp J., Ookhtens M., Aw T. Y., Reeve J., Jr, Kaplowitz N. Gamma-glutamylcysteine: a substrate for glutathione S-transferases. Biochem Pharmacol. 1985 Oct 15;34(20):3643–3647. doi: 10.1016/0006-2952(85)90224-2. [DOI] [PubMed] [Google Scholar]
  16. Tu C. P., Reddy C. C. On the multiplicity of rat liver glutathione S-transferases. J Biol Chem. 1985 Aug 25;260(18):9961–9964. [PubMed] [Google Scholar]
  17. York M. J., Beilharz G. R., Kuchel P. W. Conformation of reduced glutathione in aqueous solution by 1H and 13C n.m.r. Int J Pept Protein Res. 1987 May;29(5):638–646. doi: 10.1111/j.1399-3011.1987.tb02294.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES