Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Nov 1;255(3):957–962. doi: 10.1042/bj2550957

Inhibition of prostaglandin E2-induced phosphoinositide metabolism by phorbol ester in bovine adrenal chromaffin cells.

H Yokohama 1, M Negishi 1, K Sugama 1, H Hayashi 1, S Ito 1, O Hayaishi 1
PMCID: PMC1135334  PMID: 2850804

Abstract

In bovine adrenal chromaffin cells, prostaglandin E2 (PGE2) stimulates the formation of inositol phosphates and Ca2+ mobilization through its specific receptor [Yokohama, Tanaka, Ito, Negishi, Hayashi & Hayaishi (1988) J. Biol. Chem. 263, 1119-1122]. Here we show that PGE2-induced phosphoinositide metabolism was blocked by pretreatment with 12-O-tetradecanoylphorbol 13-acetate (TPA). Using intact cells, we also examined the inhibitory effect of TPA on the individual steps of the activation process of phosphoinositide metabolism. The inhibition was observed within 1 min and complete by 10 min after addition of 1 microM-TPA, and half-maximal inhibition by TPA occurred at 20 nM. TPA prevented Ca2+ mobilization induced by PGE2, but not by the Ca2+ ionophore ionomycin. The inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not inhibit the formation of inositol phosphates and Ca2+ mobilization by PGE2. TPA treatment affected neither the high-affinity binding of [3H]PGE2 to intact cells and membrane fractions nor the ability of guanosine 5'-[gamma-thio]triphosphate to decrease the binding in membrane fractions. TPA also abolished phosphoinositide metabolism induced by muscarinic-receptor activation. NaF plus AlCl3 and ionomycin caused the accumulation of inositol phosphates, probably by directly activating a GTP-binding protein(s) and phospholipase C respectively; neither accumulation was inhibited by TPA treatment. These results suggest that protein kinase C serves as a feedback regulator for PGE2-induced phosphoinositide metabolism. The site of action of TPA appears to be distal to the coupling of the receptor to GTP-binding protein, but on a component(s) specific to the agonist-induced phosphoinositide metabolism.

Full text

PDF
957

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthes J. C., Billah M. M., Cali A., Egan R. W., Siegel M. I. Chemotactic peptide, calcium and guanine nucleotide regulation of phospholipase C activity in membranes from DMSO-differentiated HL60 cells. Biochem Biophys Res Commun. 1987 Jun 15;145(2):825–833. doi: 10.1016/0006-291x(87)91039-4. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blackmore P. F., Bocckino S. B., Waynick L. E., Exton J. H. Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-bisphosphate by calcium-mobilizing hormones and the control of cell calcium. Studies utilizing aluminum fluoride. J Biol Chem. 1985 Nov 25;260(27):14477–14483. [PubMed] [Google Scholar]
  4. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  5. Cockcroft S., Gomperts B. D. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature. 1985 Apr 11;314(6011):534–536. doi: 10.1038/314534a0. [DOI] [PubMed] [Google Scholar]
  6. Eberhard D. A., Holz R. W. Cholinergic stimulation of inositol phosphate formation in bovine adrenal chromaffin cells: distinct nicotinic and muscarinic mechanisms. J Neurochem. 1987 Nov;49(5):1634–1643. doi: 10.1111/j.1471-4159.1987.tb01037.x. [DOI] [PubMed] [Google Scholar]
  7. Forsberg E. J., Rojas E., Pollard H. B. Muscarinic receptor enhancement of nicotine-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells. J Biol Chem. 1986 Apr 15;261(11):4915–4920. [PubMed] [Google Scholar]
  8. Gomperts B. D. Involvement of guanine nucleotide-binding protein in the gating of Ca2+ by receptors. Nature. 1983 Nov 3;306(5938):64–66. doi: 10.1038/306064a0. [DOI] [PubMed] [Google Scholar]
  9. Katada T., Gilman A. G., Watanabe Y., Bauer S., Jakobs K. H. Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem. 1985 Sep 2;151(2):431–437. doi: 10.1111/j.1432-1033.1985.tb09120.x. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Litosch I., Wallis C., Fain J. N. 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown. J Biol Chem. 1985 May 10;260(9):5464–5471. [PubMed] [Google Scholar]
  12. Lynch C. J., Charest R., Bocckino S. B., Exton J. H., Blackmore P. F. Inhibition of hepatic alpha 1-adrenergic effects and binding by phorbol myristate acetate. J Biol Chem. 1985 Mar 10;260(5):2844–2851. [PubMed] [Google Scholar]
  13. Majerus P. W., Connolly T. M., Deckmyn H., Ross T. S., Bross T. E., Ishii H., Bansal V. S., Wilson D. B. The metabolism of phosphoinositide-derived messenger molecules. Science. 1986 Dec 19;234(4783):1519–1526. doi: 10.1126/science.3024320. [DOI] [PubMed] [Google Scholar]
  14. Misbahuddin M., Isosaki M., Houchi H., Oka M. Muscarinic receptor-mediated increase in cytoplasmic free Ca2+ in isolated bovine adrenal medullary cells. Effects of TMB-8 and phorbol ester TPA. FEBS Lett. 1985 Oct 7;190(1):25–28. doi: 10.1016/0014-5793(85)80419-1. [DOI] [PubMed] [Google Scholar]
  15. Negishi M., Ito S., Tanaka T., Yokohama H., Hayashi H., Katada T., Ui M., Hayaishi O. Covalent cross-linking of prostaglandin E receptor from bovine adrenal medulla with a pertussis toxin-insensitive guanine nucleotide-binding protein. J Biol Chem. 1987 Sep 5;262(25):12077–12084. [PubMed] [Google Scholar]
  16. Negishi M., Ito S., Yokohama H., Hayashi H., Katada T., Ui M., Hayaishi O. Functional reconstitution of prostaglandin E receptor from bovine adrenal medulla with guanine nucleotide binding proteins. J Biol Chem. 1988 May 15;263(14):6893–6900. [PubMed] [Google Scholar]
  17. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  18. Orellana S. A., Solski P. A., Brown J. H. Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells. J Biol Chem. 1985 May 10;260(9):5236–5239. [PubMed] [Google Scholar]
  19. Paris S., Pouysségur J. Further evidence for a phospholipase C-coupled G protein in hamster fibroblasts. Induction of inositol phosphate formation by fluoroaluminate and vanadate and inhibition by pertussis toxin. J Biol Chem. 1987 Feb 15;262(5):1970–1976. [PubMed] [Google Scholar]
  20. Pfeilschifter J., Bauer C. Different effects of phorbol ester on angiotensin II- and stable GTP analogue-induced activation of polyphosphoinositide phosphodiesterase in membranes isolated from rat renal mesangial cells. Biochem J. 1987 Nov 15;248(1):209–215. doi: 10.1042/bj2480209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pfeilschifter J. Tumour promotor 12-O-tetradecanoylphorbol 13-acetate inhibits angiotensin II-induced inositol phosphate production and cytosolic Ca2+ rise in rat renal mesangial cells. FEBS Lett. 1986 Jul 28;203(2):262–266. doi: 10.1016/0014-5793(86)80755-4. [DOI] [PubMed] [Google Scholar]
  22. Samuelsson B., Goldyne M., Granström E., Hamberg M., Hammarström S., Malmsten C. Prostaglandins and thromboxanes. Annu Rev Biochem. 1978;47:997–1029. doi: 10.1146/annurev.bi.47.070178.005025. [DOI] [PubMed] [Google Scholar]
  23. Sasakawa N., Nakaki T., Yamamoto S., Kato R. Inositol trisphosphate accumulation by high K+ stimulation in cultured adrenal chromaffin cells. FEBS Lett. 1987 Nov 2;223(2):413–416. doi: 10.1016/0014-5793(87)80330-7. [DOI] [PubMed] [Google Scholar]
  24. Seyfred M. A., Farrell L. E., Wells W. W. Characterization of D-myo-inositol 1,4,5-trisphosphate phosphatase in rat liver plasma membranes. J Biol Chem. 1984 Nov 10;259(21):13204–13208. [PubMed] [Google Scholar]
  25. Sortino M., Canonico P. L., Summers S. T., Cronin M. J. Protein kinase C inhibits TRH-stimulated phosphoinositide hydrolysis in GH3 cells. Eur J Pharmacol. 1987 Mar 3;135(1):77–83. doi: 10.1016/0014-2999(87)90759-x. [DOI] [PubMed] [Google Scholar]
  26. Strnad C. F., Parente J. E., Wong K. Use of fluoride ion as a probe for the guanine nucleotide-binding protein involved in the phosphoinositide-dependent neutrophil transduction pathway. FEBS Lett. 1986 Sep 29;206(1):20–24. doi: 10.1016/0014-5793(86)81332-1. [DOI] [PubMed] [Google Scholar]
  27. Tanaka T., Yokohama H., Negishi M., Hayashi H., Ito S., Hayaishi O. Pertussis toxin facilitates secretagogue-induced catecholamine release from cultured bovine adrenal chromaffin cells. Biochem Biophys Res Commun. 1987 Apr 29;144(2):907–914. doi: 10.1016/s0006-291x(87)80050-5. [DOI] [PubMed] [Google Scholar]
  28. Uhing R. J., Prpic V., Jiang H., Exton J. H. Hormone-stimulated polyphosphoinositide breakdown in rat liver plasma membranes. Roles of guanine nucleotides and calcium. J Biol Chem. 1986 Feb 15;261(5):2140–2146. [PubMed] [Google Scholar]
  29. Vicentini L. M., Di Virgilio F., Ambrosini A., Pozzan T., Meldolesi J. Tumor promoter phorbol 12-myristate, 13-acetate inhibits phosphoinositide hydrolysis and cytosolic Ca2+ rise induced by the activation of muscarinic receptors in PC12 cells. Biochem Biophys Res Commun. 1985 Feb 28;127(1):310–317. doi: 10.1016/s0006-291x(85)80160-1. [DOI] [PubMed] [Google Scholar]
  30. Yokohama H., Tanaka T., Ito S., Negishi M., Hayashi H., Hayaishi O. Prostaglandin E receptor enhancement of catecholamine release may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells. J Biol Chem. 1988 Jan 25;263(3):1119–1122. [PubMed] [Google Scholar]
  31. Zavoico G. B., Halenda S. P., Sha'afi R. I., Feinstein M. B. Phorbol myristate acetate inhibits thrombin-stimulated Ca2+ mobilization and phosphatidylinositol 4,5-bisphosphate hydrolysis in human platelets. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3859–3862. doi: 10.1073/pnas.82.11.3859. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES