Abstract
Phosphatidate bilayers composed of dilauroylphosphatidate, dimyristoylphosphatidate, dipalmitoylphosphatidate and dioleoylphosphatidate were prepared. Their interaction with AMP deaminase isolated from pig heart was investigated. Dioleoylphosphatidate bilayers were found to exert non-competitive inhibition on the AMP deaminase with a Ki of 15 x 10(-6) M. This inhibition is three orders of magnitude stronger than that exerted by orthophosphate. The phosphatidate species containing saturated fatty acids were either non-inhibitory or inhibited enzyme activity rather poorly. However, alkalinization of the medium from pH 6.5 to pH 7.9 led to the inhibition of pig heart AMP deaminase by dilauroylphosphatidate bilayers. This was accompanied by the fluidization of the saturated phosphatidate species, i.e. the lowering of their phase transition temperature in alkaline pH, as measured by light-scattering and fluorescence scans. The possible significance of these findings for the regulation of AMP deaminase activity in vivo by natural membranes is discussed.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschuld R. A., Gamelin L. M., Kelley R. E., Lambert M. R., Apel L. E., Brierley G. P. Degradation and resynthesis of adenine nucleotides in adult rat heart myocytes. J Biol Chem. 1987 Oct 5;262(28):13527–13533. [PubMed] [Google Scholar]
- BERNE R. M. REGULATION OF CORONARY BLOOD FLOW. Physiol Rev. 1964 Jan;44:1–29. doi: 10.1152/physrev.1964.44.1.1. [DOI] [PubMed] [Google Scholar]
- CHANEY A. L., MARBACH E. P. Modified reagents for determination of urea and ammonia. Clin Chem. 1962 Apr;8:130–132. [PubMed] [Google Scholar]
- Cerletti P., Giovenco M. A., Giordano M. G., Giovenco S., Strom R. Succinate dehydrogenase. I. Role of phospholipids. Biochim Biophys Acta. 1967;146(2):380–396. doi: 10.1016/0005-2744(67)90223-9. [DOI] [PubMed] [Google Scholar]
- Eibl H., Blume A. The influence of charge on phosphatidic acid bilayer membranes. Biochim Biophys Acta. 1979 Jun 2;553(3):476–488. doi: 10.1016/0005-2736(79)90303-1. [DOI] [PubMed] [Google Scholar]
- Godinot C., Lardy H. A. Biosynthesis of glutamate dehydrogenase in rat liver. Demonstration of its microsomal localization and hypothetical mechanism of transfer to mitochondria. Biochemistry. 1973 May 22;12(11):2051–2060. doi: 10.1021/bi00735a005. [DOI] [PubMed] [Google Scholar]
- Godinot C. Nature and possible functions of association between glutamate dehydrogenase and cardiolipin. Biochemistry. 1973 Oct 9;12(21):4029–4034. doi: 10.1021/bi00745a002. [DOI] [PubMed] [Google Scholar]
- Karadsheh N. S., Uyeda K. Changes in allosteric properties of phosphofructokinase bound to erythrocyte membranes. J Biol Chem. 1977 Nov 10;252(21):7418–7420. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levey G. S. Restoration of glucagon responsiveness of solubilized myocardial adenyl cyclase by phosphatidylserine. Biochem Biophys Res Commun. 1971 Apr 2;43(1):108–113. doi: 10.1016/s0006-291x(71)80093-1. [DOI] [PubMed] [Google Scholar]
- Mitchell C. D., Mitchell W. B., Hanahan D. J. Enzyme and hemoglobin retention in human erythrocyte stroma. Biochim Biophys Acta. 1965 Jul 8;104(2):348–358. doi: 10.1016/0304-4165(65)90340-5. [DOI] [PubMed] [Google Scholar]
- Murakami K., Chan S. Y., Routtenberg A. Protein kinase C activation by cis-fatty acid in the absence of Ca2+ and phospholipids. J Biol Chem. 1986 Nov 25;261(33):15424–15429. [PubMed] [Google Scholar]
- Olivecrona T., Oreland L. Reassociation of soluble monoamine oxidase with lipid-depleted mitochondria in the presence of phospholipids. Biochemistry. 1971 Jan 19;10(2):332–340. doi: 10.1021/bi00778a021. [DOI] [PubMed] [Google Scholar]
- Papahadjopoulos D. Na + -K + discrimination by "pure" phospholipid membranes. Biochim Biophys Acta. 1971 Jul 6;241(1):254–259. doi: 10.1016/0005-2736(71)90323-3. [DOI] [PubMed] [Google Scholar]
- Purzycka-Preis J., Prus E., Woźniak M., Zydowo M. Modification by liposomes of the adenosine triphosphate-activating effect on adenylate deaminase from pig heart. Biochem J. 1978 Nov 1;175(2):607–612. doi: 10.1042/bj1750607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purzycka-Preis J., Zydowo M. M. Regulatory effect of pig heart phospholipids on heart muscle AMP-deaminase. Int J Biochem. 1987;19(6):565–568. doi: 10.1016/0020-711x(87)90142-x. [DOI] [PubMed] [Google Scholar]
- Rand R. P. Structural studies by X-ray diffraction of model lipid-protein membranes of serum albumin-lecithin-cardiolipin. Biochim Biophys Acta. 1971 Sep 14;241(3):823–834. doi: 10.1016/0005-2736(71)90010-1. [DOI] [PubMed] [Google Scholar]
- Träuble H., Overath P. The structure of Escherichia coli membranes studied by fluorescence measurements of lipid phase transitions. Biochim Biophys Acta. 1973 May 25;307(3):491–512. doi: 10.1016/0005-2736(73)90296-4. [DOI] [PubMed] [Google Scholar]
- Wheeler K. P., Whittam R. ATPase activity of the sodium pump needs phosphatidylserine. Nature. 1970 Jan 31;225(5231):449–450. doi: 10.1038/225449a0. [DOI] [PubMed] [Google Scholar]
- van Dijck P. W. Negatively charged phospholipids and their position in the cholesterol affinity sequence. Biochim Biophys Acta. 1979 Jul 19;555(1):89–101. doi: 10.1016/0005-2736(79)90074-9. [DOI] [PubMed] [Google Scholar]
