Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Nov 1;255(3):1015–1021. doi: 10.1042/bj2551015

Polyamines inhibit phospholipase C-catalysed polyphosphoinositide hydrolysis. Studies with permeabilized GH3 cells.

R J Wojcikiewicz 1, J N Fain 1
PMCID: PMC1135342  PMID: 2850792

Abstract

[3H]Inositol-labelled GH3 rat anterior pituitary tumour cells were permeabilized with digitonin and were incubated at 37 degrees C in the presence of ATP and Mg2+. [3H]Polyphosphoinositide breakdown and [3H]inositol phosphate production were stimulated by hydrolysis-resistant GTP analogues and by Ca2+. Of the nucleotides tested, guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) was the most effective stimulus. Activation by GTP gamma S appeared to be mediated by a guanine nucleotide-binding (G) protein as GTP gamma S-stimulated [3H]inositol phosphate production was inhibited by other nucleotides with a potency order of GTP = GDP = guanosine 5'-[beta-thio]diphosphate greater than ITP greater than GMP greater than UTP = CTP = adenosine 5'-[gamma-thio]triphosphate. The stimulatory effects of 10 microM-GTP gamma S on [3H]inositol phosphate levels were reversed by spermine and spermidine with IC50 values of approx. 0.25 and 2 mM respectively. Putrescine was inhibitory only at higher concentrations. Similarly, GTP gamma S-induced decreases in [3H]polyphosphoinositide levels were reversed by 2.5 mM-spermine. The inhibitory effects of spermine were not overcome by supramaximal concentrations of GTP gamma S. In contrast, [3H]inositol phosphate production stimulated by addition of 0.3-0.6 mM-Ca2+ to incubation media was only partially inhibited by spermine (5 mM), and spermine was not inhibitory when added Ca2+ was increased to 1 mM. These data show that polyamines, particularly spermine, inhibit phospholipase C-catalysed polyphosphoinositide hydrolysis with a marked selectivity towards the stimulatory effects of GTP gamma S.

Full text

PDF
1015

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed K., Goueli S. A., Williams-Ashman H. G. Characteristics of polyamine stimulation of cyclic nucleotide-independent protein kinase reactions. Biochem J. 1985 Dec 15;232(3):767–771. doi: 10.1042/bj2320767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J., Downes C. P., Hanley M. R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J. 1982 Sep 15;206(3):587–595. doi: 10.1042/bj2060587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J. 1983 Jun 15;212(3):849–858. doi: 10.1042/bj2120849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bethell D. R., Hibasami H., Pegg A. E. Regulation of polyamine content in cultured fibroblasts. Am J Physiol. 1982 Nov;243(5):C262–C269. doi: 10.1152/ajpcell.1982.243.5.C262. [DOI] [PubMed] [Google Scholar]
  6. Bokoch G. M., Katada T., Northup J. K., Ui M., Gilman A. G. Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. J Biol Chem. 1984 Mar 25;259(6):3560–3567. [PubMed] [Google Scholar]
  7. Buckley J. T., Hawthorne J. N. Erythrocyte membrane polyphosphoinositide metabolism and the regulation of calcium binding. J Biol Chem. 1972 Nov 25;247(22):7218–7223. [PubMed] [Google Scholar]
  8. Cascales C., Mangiapane E. H., Brindley D. N. Oleic acid promotes the activation and translocation of phosphatidate phosphohydrolase from the cytosol to particulate fractions of isolated rat hepatocytes. Biochem J. 1984 May 1;219(3):911–916. doi: 10.1042/bj2190911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chung L., Kaloyanides G., McDaniel R., McLaughlin A., McLaughlin S. Interaction of gentamicin and spermine with bilayer membranes containing negatively charged phospholipids. Biochemistry. 1985 Jan 15;24(2):442–452. doi: 10.1021/bi00323a030. [DOI] [PubMed] [Google Scholar]
  10. Cochet C., Chambaz E. M. Catalytic properties of a purified phosphatidylinositol-4-phosphate kinase from rat brain. Biochem J. 1986 Jul 1;237(1):25–31. doi: 10.1042/bj2370025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Drummond A. H. Inositol lipid metabolism and signal transduction in clonal pituitary cells. J Exp Biol. 1986 Sep;124:337–358. doi: 10.1242/jeb.124.1.337. [DOI] [PubMed] [Google Scholar]
  12. Eichberg J., Zetusky W. J., Bell M. E., Cavanagh E. Effects of polyamines on calcium-dependent rat brain phosphatidylinositol-phosphodiesterase. J Neurochem. 1981 May;36(5):1868–1871. doi: 10.1111/j.1471-4159.1981.tb00444.x. [DOI] [PubMed] [Google Scholar]
  13. Feige J. J., Madani C., Chambaz E. M. Hormonal control of polyamine levels in bovine adrenocortical cells. Endocrinology. 1986 Mar;118(3):1059–1066. doi: 10.1210/endo-118-3-1059. [DOI] [PubMed] [Google Scholar]
  14. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  15. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  16. Hendrickson H. S. Physical properties and interactions of phosphoinositides. Ann N Y Acad Sci. 1969 Oct 17;165(2):668–676. [PubMed] [Google Scholar]
  17. Hinkle P. M., Kinsella P. A. Regulation of thyrotropin-releasing hormone binding by monovalent cations and guanyl nucleotides. J Biol Chem. 1984 Mar 25;259(6):3445–3449. [PubMed] [Google Scholar]
  18. Hong K., Schuber F., Papahadjopoulos D. Polyamines. Biological modulators of membrane fusion. Biochim Biophys Acta. 1983 Jul 27;732(2):469–472. doi: 10.1016/0005-2736(83)90064-0. [DOI] [PubMed] [Google Scholar]
  19. Hrbolich J. K., Culty M., Haslam R. J. Activation of phospholipase C associated with isolated rabbit platelet membranes by guanosine 5'-[gamma-thio]triphosphate and by thrombin in the presence of GTP. Biochem J. 1987 Apr 15;243(2):457–465. doi: 10.1042/bj2430457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Irvine R. F., Anggård E. E., Letcher A. J., Downes C. P. Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands. Biochem J. 1985 Jul 15;229(2):505–511. doi: 10.1042/bj2290505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kawaguchi T., Konishi K. Relation between phosphorylation and adenosine triphosphate-dependent Ca2+ binding of swine and bovine erythrocyte membranes. Biochim Biophys Acta. 1980 Apr 24;597(3):577–586. doi: 10.1016/0005-2736(80)90229-1. [DOI] [PubMed] [Google Scholar]
  22. Lundberg G. A., Jergil B., Sundler R. Phosphatidylinositol-4-phosphate kinase from rat brain. Activation by polyamines and inhibition by phosphatidylinositol 4,5-bisphosphate. Eur J Biochem. 1986 Dec 1;161(2):257–262. doi: 10.1111/j.1432-1033.1986.tb10441.x. [DOI] [PubMed] [Google Scholar]
  23. Lundberg G. A., Sundler R., Jergil B. Activation of phosphatidylinositol-4-phosphate kinase in rat liver plasma membranes by polyamines. Biochim Biophys Acta. 1987 Oct 31;922(1):1–7. doi: 10.1016/0005-2760(87)90238-4. [DOI] [PubMed] [Google Scholar]
  24. Mackall J., Meredith M., Lane M. D. A mild procedure for the rapid release of cytoplasmic enzymes from cultured animal cells. Anal Biochem. 1979 May;95(1):270–274. doi: 10.1016/0003-2697(79)90216-1. [DOI] [PubMed] [Google Scholar]
  25. Martin T. F. Hormone-regulated phosphoinositide turnover in permeabilized cells and membranes. Methods Enzymol. 1987;141:111–126. doi: 10.1016/0076-6879(87)41060-4. [DOI] [PubMed] [Google Scholar]
  26. Martin T. F., Lucas D. O., Bajjalieh S. M., Kowalchyk J. A. Thyrotropin-releasing hormone activates a Ca2+-dependent polyphosphoinositide phosphodiesterase in permeable GH3 cells. GTP gamma S potentiation by a cholera and pertussis toxin-insensitive mechanism. J Biol Chem. 1986 Feb 25;261(6):2918–2927. [PubMed] [Google Scholar]
  27. Meers P., Hong K., Bentz J., Papahadjopoulos D. Spermine as a modulator of membrane fusion: interactions with acidic phospholipids. Biochemistry. 1986 Jun 3;25(11):3109–3118. doi: 10.1021/bi00359a007. [DOI] [PubMed] [Google Scholar]
  28. Moruzzi M., Barbiroli B., Monti M. G., Tadolini B., Hakim G., Mezzetti G. Inhibitory action of polyamines on protein kinase C association to membranes. Biochem J. 1987 Oct 1;247(1):175–180. doi: 10.1042/bj2470175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  30. Northup J. K., Smigel M. D., Gilman A. G. The guanine nucleotide activating site of the regulatory component of adenylate cyclase. Identification by ligand binding. J Biol Chem. 1982 Oct 10;257(19):11416–11423. [PubMed] [Google Scholar]
  31. Orsulakova A., Stockhorst E., Schacht J. Effect of neomycin on phosphoinositide labelling and calcium binding in guinea-pig inner ear tissues in vivo and in vitro. J Neurochem. 1976 Feb;26(2):285–290. doi: 10.1111/j.1471-4159.1976.tb04478.x. [DOI] [PubMed] [Google Scholar]
  32. Pegg A. E. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J. 1986 Mar 1;234(2):249–262. doi: 10.1042/bj2340249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sagawa N., Bleasdale J. E., Di Renzo G. C. The effects of polyamines and aminoglycosides on phosphatidylinositol-specific phospholipase C from human amnion. Biochim Biophys Acta. 1983 Jun 16;752(1):153–161. doi: 10.1016/0005-2760(83)90243-6. [DOI] [PubMed] [Google Scholar]
  34. Schindler M., Koppel D. E., Sheetz M. P. Modulation of membrane protein lateral mobility by polyphosphates and polyamines. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1457–1461. doi: 10.1073/pnas.77.3.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Seyfred M. A., Farrell L. E., Wells W. W. Characterization of D-myo-inositol 1,4,5-trisphosphate phosphatase in rat liver plasma membranes. J Biol Chem. 1984 Nov 10;259(21):13204–13208. [PubMed] [Google Scholar]
  36. Smith C. D., Wells W. W. Characterization of a phosphatidylinositol 4-phosphate-specific phosphomonoesterase in rat liver nuclear envelopes. Arch Biochem Biophys. 1984 Dec;235(2):529–537. doi: 10.1016/0003-9861(84)90226-1. [DOI] [PubMed] [Google Scholar]
  37. Storey D. J., Shears S. B., Kirk C. J., Michell R. H. Stepwise enzymatic dephosphorylation of inositol 1,4,5-trisphosphate to inositol in liver. Nature. 1984 Nov 22;312(5992):374–376. doi: 10.1038/312374a0. [DOI] [PubMed] [Google Scholar]
  38. Straub R. E., Gershengorn M. C. Thyrotropin-releasing hormone and GTP activate inositol trisphosphate formation in membranes isolated from rat pituitary cells. J Biol Chem. 1986 Feb 25;261(6):2712–2717. [PubMed] [Google Scholar]
  39. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  40. Tadolini B., Varani E. Interaction of spermine with polyphosphoinositides containing liposomes and myo-inositol 1,4,5 triphosphate. Biochem Biophys Res Commun. 1986 Feb 26;135(1):58–64. doi: 10.1016/0006-291x(86)90942-3. [DOI] [PubMed] [Google Scholar]
  41. Van Rooijen L. A., Agranoff B. W. Inhibition of polyphosphoinositide phosphodiesterase by aminoglycoside antibiotics. Neurochem Res. 1985 Aug;10(8):1019–1024. doi: 10.1007/BF00965878. [DOI] [PubMed] [Google Scholar]
  42. Vogel S., Hoppe J. Polyamines stimulate the phosphorylation of phosphatidylinositol in membranes from A431 cells. Eur J Biochem. 1986 Jan 15;154(2):253–257. doi: 10.1111/j.1432-1033.1986.tb09390.x. [DOI] [PubMed] [Google Scholar]
  43. Wojcikiewicz R. J., Kent P. A., Fain J. N. Evidence that thyrotropin-releasing hormone-induced increases in GTPase activity and phosphoinositide metabolism in GH3 cells are mediated by a guanine nucleotide-binding protein other than Gs or Gi. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1383–1389. doi: 10.1016/s0006-291x(86)80436-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES