Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Nov 15;256(1):139–146. doi: 10.1042/bj2560139

Kinetic studies on the broad-specificity beta-D-glucosidase from pig kidney.

I Pócsi 1, L Kiss 1
PMCID: PMC1135379  PMID: 3146970

Abstract

A broad-specificity beta-D-glucosidase from pig kidney cortex was isolated and purified to homogeneity by a rapid purification procedure. The pI (5.14 +/- 0.05), Mr (59,000 +/- 2000) and specific activities with several p-nitrophenyl glycosides (galactopyranoside, glucopyranoside, arabinopyranoside, xylopyranoside) were comparable with those published previously for cytoplasmic beta-D-glucosidase from other sources and organs. Mixed-substrate experiments and inhibition studies with glucono-(1----5)-lactone revealed that a single active centre, containing one catalytic site and one saccharide-binding site, was responsible for the splitting of all four synthetic substrates. Inhibition experiments with substrate analogues demonstrated that (i) the major binding determinant of the glycosides was the aglycone moiety, (ii) an anionic side chain of the enzyme (probably a carboxy group) interacted with the glycosidic linkages and (iii) the properties of the aglycone significantly influenced the binding of the carbohydrate moiety. The inhibition constants of the p-nitrothiophenyl derivatives were in good agreement with the Km values of the corresponding substrates. Therefore the Michaelis constants could be regarded as true equilibrium constants (Ks). The 'three-point-attachment model' of the substrate splitting, proposed by Daniels [(1983) Ph.D. Dissertation, University of Pittsburgh] for the analogous liver enzyme, was applicable for beta-D-glucosidase from pig kidney too. The possible nature of the 'attachments' is discussed.

Full text

PDF
139

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams H. E., Robinson D. Beta-D-glucosidases and related enzymic activities in pig kidney. Biochem J. 1969 Mar;111(5):749–755. doi: 10.1042/bj1110749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chester M. A., Hultberg B., Ockerman P. A. The common identity of five glycosidases in human liver. Biochim Biophys Acta. 1976 Apr 8;429(2):517–526. doi: 10.1016/0005-2744(76)90299-0. [DOI] [PubMed] [Google Scholar]
  3. Conchie J., Hay A. J., Strachan I., Levvy G. A. Inhibition of glycosidases by aldonolactones of corresponding configuration: Preparation of (1-->5)-lactones by catalytic oxidation of pyranoses and study of their inhibitory properties. Biochem J. 1967 Mar;102(3):929–941. doi: 10.1042/bj1020929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dale M. P., Ensley H. E., Kern K., Sastry K. A., Byers L. D. Reversible inhibitors of beta-glucosidase. Biochemistry. 1985 Jul 2;24(14):3530–3539. doi: 10.1021/bi00335a022. [DOI] [PubMed] [Google Scholar]
  5. Daniels L. B., Coyle P. J., Chiao Y. B., Glew R. H., Labow R. S. Purification and characterization of a cytosolic broad specificity beta-glucosidase from human liver. J Biol Chem. 1981 Dec 25;256(24):13004–13013. [PubMed] [Google Scholar]
  6. Foster R. J., Niemann C. The Evaluation of the Kinetic Constants of Enzyme Catalyzed Reactions. Proc Natl Acad Sci U S A. 1953 Oct;39(10):999–1003. doi: 10.1073/pnas.39.10.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glew R. H., Peters S. P., Christopher A. R. Isolation and characterization of beta-glucosidase from the cytosol of rat kidney cortex. Biochim Biophys Acta. 1976 Jan 23;422(1):179–199. doi: 10.1016/0005-2744(76)90018-8. [DOI] [PubMed] [Google Scholar]
  8. Grover A. K., Cushley R. J. Studies on almond emulsin beta-D-glucosidase. II. Kinetic evidence for independent glucosidase and galactosidase sites. Biochim Biophys Acta. 1977 May 12;482(1):109–124. doi: 10.1016/0005-2744(77)90359-x. [DOI] [PubMed] [Google Scholar]
  9. LEVVY G. A., McALLAN A., HAY A. J. Inhibition of glycosidases by aldonolactones of corresponding configuration. 3. Inhibitors of beta-D-galactosidase. Biochem J. 1962 Feb;82:225–232. doi: 10.1042/bj0820225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. LaMarco K. L., Glew R. H. Galactosylsphingosine inhibition of the broad-specificity cytosolic beta-glucosidase of human liver. Arch Biochem Biophys. 1985 Feb 1;236(2):669–676. doi: 10.1016/0003-9861(85)90672-1. [DOI] [PubMed] [Google Scholar]
  12. LaMarco K. L., Glew R. H. Hydrolysis of a naturally occurring beta-glucoside by a broad-specificity beta-glucosidase from liver. Biochem J. 1986 Jul 15;237(2):469–476. doi: 10.1042/bj2370469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Leaback D. H. On the inhibition of beta-N-acetyl-D-glucosaminidase by 2-acetamido-2-deoxy-D-glucono-(1-5)-lactone. Biochem Biophys Res Commun. 1968 Sep 30;32(6):1025–1030. doi: 10.1016/0006-291x(68)90132-0. [DOI] [PubMed] [Google Scholar]
  15. Mellor J. D., Layne D. S. Steroid - D -glucosidase activity in rabbit tissues. J Biol Chem. 1971 Jul 25;246(14):4377–4380. [PubMed] [Google Scholar]
  16. Paez de la Cadena M., Rodríguez-Berrocal J., Cabezas J. A., Pérez González N. Properties and kinetics of a neutral beta-galactosidase from rabbit kidney. Biochimie. 1986 Mar;68(2):251–260. doi: 10.1016/s0300-9084(86)80022-0. [DOI] [PubMed] [Google Scholar]
  17. Pierce R. J., Price R. G. The separation and characterization of marmoset kidney beta-D-galactosidase and beta-D-glucosidase. Biochem J. 1977 Dec 1;167(3):765–773. doi: 10.1042/bj1670765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Price R. G., Robinson D. A comparison of the beta-D-glucosidase and beta-D-galactosidase activities from eleven enzyme sources. Comp Biochem Physiol. 1966 Jan;17(1):129–138. doi: 10.1016/0010-406x(66)90014-4. [DOI] [PubMed] [Google Scholar]
  19. Selwyn M. J. A simple test for inactivation of an enzyme during assay. Biochim Biophys Acta. 1965 Jul 29;105(1):193–195. doi: 10.1016/s0926-6593(65)80190-4. [DOI] [PubMed] [Google Scholar]
  20. Shimahara K., Takahashi T. An infrared spectrophotometric study on the interconversion and hydrolysis of D-glucono-gamma- and delta-lactone in deuterium oxide. Biochim Biophys Acta. 1970 Mar 24;201(3):410–415. doi: 10.1016/0304-4165(70)90159-5. [DOI] [PubMed] [Google Scholar]
  21. Swaminathan N., Radhakrishnan A. N. Characterization of two hetero-beta-galactosidases from monkey small intestine. Arch Biochem Biophys. 1969 Dec;135(1):288–295. doi: 10.1016/0003-9861(69)90542-6. [DOI] [PubMed] [Google Scholar]
  22. Tanaka A., Ito M., Hiromi K. Equilibrium and kinetic studies on the binding of gluconolactone to almond beta-glucosidase in the absence and presence of glucose. J Biochem. 1986 Nov;100(5):1379–1385. doi: 10.1093/oxfordjournals.jbchem.a121844. [DOI] [PubMed] [Google Scholar]
  23. Tommasini R., Endrenyi L., Taylor P. A., Mahuran D. J., Lowden J. A. A statistical comparison of parameter estimation for the Michaelis-Menten kinetics of human placental hexosaminidase. Can J Biochem Cell Biol. 1985 Mar;63(3):225–230. doi: 10.1139/o85-032. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES