Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Dec 1;256(2):681–684. doi: 10.1042/bj2560681

Chemical and enzymic oxidation by tyrosinase of 3,4-dihydroxymandelate.

J Cabanes 1, A Sanchez-Ferrer 1, R Bru 1, F García-Carmona 1
PMCID: PMC1135465  PMID: 3146978

Abstract

Tyrosinase usually catalyses the conversion of monophenols into o-diphenols and the oxidation of diphenols to the corresponding o-quinones. Sugumaran [(1986) Biochemistry 25, 4489-4492] has previously proposed an unusual oxidative decarboxylation of 3,4-dihydroxymandelate catalysed by tyrosinase. Our determination of the intermediates involved in the reaction demonstrated that 3,4-dihydroxybenzaldehyde is not the first intermediate appearing in the medium during the enzymic reaction. Re-examination of this new activity of tyrosinase has demonstrated that the product of the enzyme action is the o-quinone, which, owing to its instability, evolves to the final product, 3,4-dihydroxybenzaldehyde, by a chemical reaction of oxidative decarboxylation.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cabanes J., García-Cánovas F., García-Carmona F. Chemical and enzymatic oxidation of 4-methylcatechol in the presence and absence of L-serine. Spectrophotometric determination of intermediates. Biochim Biophys Acta. 1987 Aug 5;914(2):190–197. doi: 10.1016/0167-4838(87)90063-x. [DOI] [PubMed] [Google Scholar]
  2. Cánovas F. G., García-Carmona F., Sánchez J. V., Pastor J. L., Teruel J. A. The role of pH in the melanin biosynthesis pathway. J Biol Chem. 1982 Aug 10;257(15):8738–8744. [PubMed] [Google Scholar]
  3. Garcia-Carmona F., Cabanes J., Garcia-Canovas F. Kinetic study of sinephrine oxidation by mushroom tyrosinase. Biochem Int. 1987 Jun;14(6):1003–1013. [PubMed] [Google Scholar]
  4. García-Carmona F., Cabanes J., García-Cánovas F. Enzymatic oxidation by frog epidermis tyrosinase of 4-methylcatechol and p-cresol. Influence of L-serine. Biochim Biophys Acta. 1987 Aug 5;914(2):198–204. doi: 10.1016/0167-4838(87)90064-1. [DOI] [PubMed] [Google Scholar]
  5. Graham D. G., Jeffs P. W. The role of 2,4,5-trihydroxyphenylalanine in melanin biosynthesis. J Biol Chem. 1977 Aug 25;252(16):5729–5734. [PubMed] [Google Scholar]
  6. Hansson C., Rorsman H., Rosengren E. 5-hydroxydopa, a new compound in the Raper-Mason scheme of melanogenesis. Acta Derm Venereol. 1980;60(4):281–286. [PubMed] [Google Scholar]
  7. Jimenez M., Garcia-Canovas F., Garcia-Carmona F., Lozano J. A., Iborra J. L. Kinetic study and intermediates identification of noradrenaline oxidation by tyrosinase. Biochem Pharmacol. 1984 Nov 15;33(22):3689–3697. doi: 10.1016/0006-2952(84)90158-8. [DOI] [PubMed] [Google Scholar]
  8. Jimenez M., Garcia-Carmona F., Garcia-Canovas F., Iborra J. L., Lozano J. A., Martinez F. Chemical intermediates in dopamine oxidation by tyrosinase, and kinetic studies of the process. Arch Biochem Biophys. 1984 Dec;235(2):438–448. doi: 10.1016/0003-9861(84)90217-0. [DOI] [PubMed] [Google Scholar]
  9. POMERANTZ S. H. Separation, purification, and properties of two tyrosinases from hamster melanoma. J Biol Chem. 1963 Jul;238:2351–2357. [PubMed] [Google Scholar]
  10. Sugumaran M. Tyrosinase catalyzes an unusual oxidative decarboxylation of 3,4-dihydroxymandelate. Biochemistry. 1986 Aug 12;25(16):4489–4492. doi: 10.1021/bi00364a005. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES